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ABSTRACT
We study the problem of nonparametric dependence detection. Many existing methods may suffer severe
power loss due to nonuniform consistency, which we illustrate with a paradox. To avoid such power loss,
we approach the nonparametric test of independence through the new framework of binary expansion
statistics (BEStat) and binary expansion testing (BET), which examine dependence through a novel binary
expansion filtration approximation of the copula. Through a Hadamard transform, we find that the sym-
metry statistics in the filtration are complete sufficient statistics for dependence. These statistics are also
uncorrelated under the null. By using symmetry statistics, the BET avoids the problem of nonuniform
consistency and improves upon a wide class of commonly used methods (a) by achieving the minimax
rate in sample size requirement for reliable power and (b) by providing clear interpretations of global
relationships upon rejection of independence. The binary expansion approach also connects the symmetry
statistics with the current computing system to facilitate efficient bitwise implementation. We illustrate the
BET with a study of the distribution of stars in the night sky and with an exploratory data analysis of the
TCGA breast cancer data. Supplementary materials for this article are available online.
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1. Introduction

Independence is one of the most foundational concepts in statis-
tics. It is also one of the most common assumptions in statistical
literature. Thus, verifying independence is one of the most
important testing problems. If we are not able to check this
crucial condition, then we are “betting on independence” at the
risk of losing the validity of our conclusions. In this article, we
study the dependence detection problem in a distribution-free
setting, in which we do not make any assumption on the joint
distribution. We focus on the test of independence between two
continuous variables, though the approach can be generalized
for more variables. Without loss of generality, we consider n
iid observations from the copula (U, V) whose marginal dis-
tributions are uniform over [0, 1]. This copula can be obtained
by transformations with marginal cumulative distribution func-
tions (CDFs) when they are known. In this case, U and V are
independent if and only if their joint distribution P(U,V) is the
bivariate uniform distribution over [0, 1]2, denoted by P0. We
also study the case when the marginal CDFs are unknown. In
this case, we can use the empirical CDFs, and the test is about
the independence of observed ranks. The theory and procedures
are shown to be similar.

Tests of independence have been extensively studied in statis-
tics and information theory. One of the most classical para-
metric methods is based on the Pearson correlation, which
can be interpreted as a measure of linear relationship. Classical
results in Rényi (1959) connect correlation and independence.
Recent tests based on robust versions of correlation include
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Han, Chen, and Liu (2017). Existing nonparametric testing
procedures can be roughly categorized into three main classes:

(a) The CDF approach, which compares the joint CDF and
the product of marginal CDFs: this pioneer approach includes
variants of the Kolmogorov–Smirnov test such as Hoeffding
(1948) and Romano (1989).

(b) The distance and kernel based approach, which can be
regarded as a generalization of the correlation: one important
recent development on dependence measures is the distance
correlation (Székely et al. 2007; Székely and Rizzo 2009), which
possesses the crucial property that a zero distance correlation
implies independence. Tests based on sample versions of the
distance correlation (Székely and Rizzo 2013a, 2013b) have since
been popular methods. Other important methods include the
generalized measures of correlation (GMC) by Zheng et al.
(2012) and the Hilbert Schmidt independence criterion (HSIC)
by Gretton et al. (2007), Sejdinovic et al. (2013), and Pfister et
al. (2016) who study dependence through distances between
embedding of distributions to reproducing kernel Hilbert spaces
(RKHS).

(c) The binning approach, which generalizes the comparison
of the joint density and the product of marginal ones: by
discretizing X and Y into finite many categories, classical
statistical or information theoretical methods such as the
χ2 tests and Fisher’s exact tests can be applied to study the
dependence. Miller and Siegmund (1982) studied the maximal
χ2 statistic from forming 2 × 2 tables through partitions of
data. Reshef et al. (2011, 2015a, 2015b) introduced the maximal
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information coefficient (MIC) by aggregating information from
optimal partitions of the scatterplot for different partition
sizes. This approach was further studied by the k-nearest
neighbor mutual information (KNN-MI) approach as described
in Kraskov, Stögbauer, and Grassberger (2004) and Kinney
and Atwal (2014). Heller, Heller, and Gorfine (2012), Heller
et al. (2016), and Heller and Heller (2016) studied optimal
permutation tests over partitions to improve the power. Filippi
and Holmes (2015) took a Bayesian nonparametric approach
to the partitions. Wang, Jiang, and Liu (2016) considered
a generalized R2 to detect piecewise linear relationships, a
compromise between the distance approach and the binning
approach that takes advantages of both. A very recent paper on
Fisher exact scanning (FES) by Ma and Mao (2019) constructed
multiscale scan statistics that are particularly effective at
detecting local dependency through Fisher’s exact tests over
rectangle scanning windows.

Most of the above nonparametric tests enjoy the property
of universal consistency against any particular form of depen-
dence. Formally, this universality means that for any specific
copula distribution P1 �= P0, as n → ∞, the test for the
problem H0 : P(U,V) = P0 versus H1 : P(U,V) = P1 has
an asymptotic power of 1. However, one important problem in
many distribution-free tests is the lack of uniformity. To see this,
we consider the total variation (TV) distance TV(·, ·), which
is defined by TV(P, Q) = supS∈F |P(S) − Q(S)|, where F is
a σ -algebra of the sample space. The uniform consistency of
nonparametric dependence detection w.r.t. the TV distance is
to be consistent for any alternative which is certain distant from
independence, that is,

H0 : P(U,V) = P0 versus H1 : TV(P(U,V), P0) ≥ δ (1.1)
for some 0 < δ ≤ 1. For the testing problem in (1.1), although
many tests are universally consistent, we show in Section 2
and Theorem 2.2 the nonexistence of a test that is uniformly
consistent w.r.t. the TV distance. The uniformity issue is due to
the fact that the space of H1 is large. Said another way: when two
variables are not independent, there are so many ways they can
be dependent. In practice, having this nonuniform consistency
problem means having “blind spots” in dependence detection
for a given sample size, that is, having very low power for many
forms of dependency, especially nonlinear ones. Note that non-
linear forms of dependence are ubiquitous in sciences, for exam-
ple, laws in physics defined by differential equations. Therefore,
avoiding the power loss due to the nonuniform consistency
problem in nonparametric dependence detection means having
robust power against a large class of alternatives and improving
the ability of discovering novel relationships in many areas of
science.

Because of the impossibility of testing (1.1) with uniform
consistency w.r.t. the TV distance (Theorem 2.2), to avoid
such power loss, we propose to test approximate independence
through a filtration approach. Such a filtration is constructed by
the σ -fields generated by binary variables from marginal binary
expansions which jointly approximate the copula distribution.
Similar filtration ideas are nicely described in Liu and Meng
(2014, 2016) in studying the Simpson’s paradox. The approxima-
tion idea is also related to the “probably approximately correct”

(PAC) approach in machine learning (Valiant 1984). We explain
the details in Section 3.1.

We note here that although many other ways of filtration
approximations are available, there are a few important advan-
tages of the proposed binary expansion filtration that facilitate
studies of dependence.

(a) The σ -field generated by binary variables is finite.
(b) Two binary variables are independent if and only if they

are uncorrelated.
We call the statistics that are functions of the Bernoulli vari-

ables from the above filtration approximation binary expansion
statistics (BEStat), and we call the testing framework on the
corresponding approximate independence the binary expan-
sion testing (BET) framework. This approach leads to studies
of contingency tables from discretizations. Although classical
tests such as the χ2 tests (Lehmann and Romano 2006) are
readily available, they have some drawbacks: (a) the exponen-
tially growing degrees of freedom that would affect the power
and (b) the unclear interpretability of dependence when the
independence hypothesis is rejected. To improve on these two
issues, we consider reparameterization of the likelihood of the
contingency tables through a novel binary interaction design
(BID) equation (Theorem 3.4), which connects the study of
dependence to the Hadamard transform in signal processing.
Through this connection, the interactions of binary variables
in the filtration are shown to be complete sufficient statistics
for dependence. By using these interactions, we convert the
dependence detection problem to a multiple testing problem.
Statistically speaking, the benefits of the above approach are
summarized below:

(a) The Hadamard transform provides new insights for the
analysis of any contingency table whose size is a power of 2.
Compared to the conventional parameterization, the novel
parameters marginal interaction odds ratios (MIOR) and
cross interaction odds ratios (CIOR) separate the marginal
and joint information, and CIORs being 1 is equivalent to
independence. As an analogy, the CIORs are to contingency
tables as the correlations are to multivariate normal distri-
butions. See Theorems 3.7 and 3.8.

(b) The symmetry statistics from the reparameterization are
shown to be complete sufficient statistics for dependence.
They are identically distributed and are uncorrelated under
the null. See Theorems 4.1–4.3.

(c) As a consequence of the above properties, the multiple
testing procedure is shown to be minimax in the sample size
requirement for reliable power. See Theorem 4.4.

(d) Upon rejection of independence, the largest absolute sym-
metry statistic and the corresponding cross interaction pro-
vide clear interpretation of the dependency.

Although theories for copula and contingency tables are well-
developed, we are not aware of similar approach or results in
statistical literature.

We also note that the BEStat approach is closely related to
computing. In current computing systems, each decimal num-
ber is coded as a sequence of binary bits, which is exactly the
binary expansion of that number. This connection means that
one can carry out the BEStat procedures by operating directly
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Figure 1. The bisection expanding cross (BEX) at level d = 1, . . . , 4.

over bits. Since bitwise operations are one of the most effi-
cient operations in current computing systems, we are able to
develop computationally efficient implementations of the pro-
posed method. The detailed algorithm is described in a separate
paper (Zhao et al. 2019), and it improves the speed of existing
methods by orders of magnitude.

This article is organized in as follows: Section 2 explains the
problem of nonuniform consistency. Section 3 introduces the
concept and basic theory in the framework of BEStat and BET.
Section 4 studies the Max BET procedure and its properties.
Section 5 connects the BEStat framework to current computing
system. Sections 6–8 illustrate the procedure with simulated and
real data studies. Section 9 concludes the article with discussions
of future work. The proofs can be found in the supplementary
materials.

2. Motivation: Nonuniform Consistency

To explain the problem of nonuniform consistency, we develop
the following example of the bisection expanding cross (BEX).
Many existing methods suffer substantial power loss under this
example due to this problem, which can be avoided through the
BEStat proposed in Sections 3 and 4.

We call the following sequence of one-dimensional mani-
folds in [0, 1]2 the BEX. These manifolds can be defined through
the implicit function γd(x, y) = 0 for every integer d > 0:
BEXd = {(x, y) ∈ [0, 1]2 : γd(x, y) = 0}, where

γd(x, y) =
2d−1∑
i=1

2d−1∑
j=1

(∣∣∣∣x − i
2d−1 + 1

2d

∣∣∣∣ −
∣∣∣∣y − j

2d−1 + 1
2d

∣∣∣∣
)

× I
(∣∣∣∣x − i

2d−1 + 1
2d

∣∣∣∣ ≤ 1
2d

)
I
(∣∣∣∣y − j

2d−1 + 1
2d

∣∣∣∣ ≤ 1
2d

)
.

The BEX structure is illustrated in Figure 1, where the first four
levels are plotted. Graphically, this grid can be regarded as a
space-filling fractal by recursively expanding the bisector of the
four “arms” of BEX1 until intersection.

Now we consider the random variables (Xd, Yd) that are
uniformly distributed over BEXd whose joint distribution is
denoted by Pd. The properties of these distributions are sum-
marized in the following proposition.

Proposition 2.1.

(a) Xd and Yd are marginally Uniform[0, 1] for any d.
(b) γd(Xd, Yd) = 0 for any d, that is, the joint distribution of

(X, Y) is degenerate. In particular, TV(Pd, P0) = 1 for any d.

(c) ∀(x, y) ∈ [0, 1]2, as d → ∞, |Pd(Xd ≤ x, Yd ≤ y) −
Pd(Xd ≤ x)Pd(Yd ≤ y)| → 0.

Part (b) and part (c) of Proposition 2.1 seem to contradict
each other: part (b) says that the joint distribution of Xd and
Yd is far away from independence in the TV distance, thus they
are strongly nonindependent. Yet, part (c) claims that when d is
large, Xd and Yd are nearly independent. Indeed, the BEX shows
that despite a TV distance of 1, degenerate distributions can be
arbitrarily close to independence. We shall explain this paradox
in Section 4.3. This paradox also lead to a challenge to testing
methods: given a finite sample, can we effectively distinguish any
form of dependency from independence?

Unfortunately, for any testing method, the answer is negative.
Intuitively speaking, this is because for any given test with a
given samples size n, one can keep expanding the BEX until it is
so close to independence that this test becomes powerless. This
example thus illustrates the problem of nonuniform consistency
of the test in (1.1): no test can be uniformly consistent against all
forms of dependence, not even all levels of the BEX, for which
δ = 1 in (1.1). See Theorem 2.2.

The power loss due to nonuniform consistency can be severe.
For example, simulations (see Section 1.1 in the supplementary
materials) show that many CDF based and kernel based tests
are powerless in detecting BEX at level 4 even when the sample
size is as high as 20,000. Note that with such a large sample,
the BEX structure and the dependency can be clearly observed
in the scatterplot by naked eyes. However, many existing tests
cannot distinguish it from independence.

We make a few remarks about the BEX example before
proceeding.

(a) The BEX is closely related to many research problems
such as the chessboard detection in computer vision (Forsyth
and Ponce 2002).

(b) The BEX is not the first example that a sequence of
degenerate distributions converges to independence. The earli-
est example we could find is in Kimeldorf and Sampson (1978).
There are also other interesting and useful fractal applications in
statistics such as Craiu and Meng (2005, 2006). The basis of the
BEX example is a classical result in Vitale (1990). We construct
the BEX paradox due to its fractal structure which explains the
problem of nonuniform consistency.

(c) The nonuniform consistency shown with the BEX is
specifically for our choice of the TV distance between distribu-
tions. There are many other distances (Tsybakov 2008), and a
different choice of distance could lead to a different test statistic
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and different results on uniform consistency. We choose the TV
distance because (1) it is a widely used distance in literature, (2)
it is equivalent to many other distances, and (3) it is convenient
for the analysis in our binary expansion approach. Therefore,
throughout this article, we focus on the TV distance, and all
results about uniform consistency are w.r.t. the TV distance.
In particular, we provide a formal statement of the problem of
nonuniform consistency w.r.t. the TV distance below:

Theorem 2.2. Consider the testing problem in (1.1). For
any finite number of iid observations n, for any test that
has a Lebesgue measurable critical region Cn ⊂ R

2n with
PH0(∂Cn) = 0 and PH0(Cn) ≤ α, ∀ε > 0, there exists a bivariate
distribution Fn ∈ H1 and PFn(Cn) ≤ α + ε.

The message of Theorem 2.2 is that in a distribution-free
setting without any assumption on the joint distribution, depen-
dence is not a tractable target. The intractability comes from
the fact that without a model of the joint distribution, there
is no parameter to characterize and identify the underlying
form of dependency. Therefore, there is no target for inference
about dependence from a test or any other statistical method.
Although one can develop good measures of dependence such
as distance correlation, GMC, HSIC, and MIC, such measures
cannot make the joint distribution identifiable. Therefore, they
can never replace the role of parameters in statistical inference
about dependence. This fact motivates the following three key
elements in the BEStat approach and the BET framework:

(a) Rather than one test of independence, we will study depen-
dence through a carefully designed sequence of tests based
on a filtration to achieve universality.

(b) For every test statistic in the sequence, there is an explicit
well-defined set of parameters as the target for inference to
achieve identifiability.

(c) At every step in the sequence, the test is consistent against
all alternatives which are δ-away from independence in the
TV distance to achieve uniformity.

The above BET framework can help explain the seeming para-
dox in the BEX example, and the proposed test can have high
power against this dependency. See Section 4.3.

3. The Basic Theory of Binary Expansion Statistics

3.1. Binary Expansion Filtration

The considerations in Section 2 necessitate a multiscale binning
approach to study dependence. For the dependence detection
problem, this multiscale approach means to test some approxi-
mate independence rather than the exact hypothesis in (1.1). We
study the known marginal CDF case first, for which we develop
such a multiscale framework through the following classical
result on the binary expansion of a uniform random variable
(Kac 1959):

Theorem 3.1. If U ∼ Uniform[0, 1], then U = ∑∞
k=1

Ak
2k where

Ak
iid∼ Bernoulli(1/2).

The binary expansion in Theorem 3.1 decomposes the infor-
mation about U into information from independent Bernoulli
Aks. Aks can be also regarded as indicator functions of U. For
example, A1 = I(U ∈ (1/2, 1]), A2 = I(U ∈ (1/4, 1/2] ∪
(3/4, 1]), see Kac (1959). To study the dependence between U
and V , we consider the binary expansion of both U and V :
U = ∑∞

k=1
Ak
2k and V = ∑∞

k=1
Bk
2k where Ak

iid∼ Bernoulli(1/2)

and Bk
iid∼ Bernoulli(1/2).

Note that if we truncate the binary expansions of U and V at
some finite depths d1 and d2, respectively, Ud1 = ∑d1

k=1
Ak
2k and

Vd2 = ∑d2
k=1

Bk
2k , then Ud1 and Vd2 are two discrete variables that

can take 2d1 and 2d2 possible values, respectively. Moreover, as
d1, d2 → ∞, |Ud1 −U| = Op(2−d1) and |Vd2 −V| = Op(2−d2).
In particular,

‖(Ud1 , Vd2) − (U, V)‖2 = Op(2− min{d1,d2}). (3.1)

The above considerations are apparent if one regards the
truncations as a filtration generated by {Ak}d1

k=1 and {Bk}d2
k=1 for

each d1, d2 ≥ 1. Indeed, the filtration idea is a consequence
of George Box’s aphorism “All models are wrong, but some are
useful.” At every d1 and d2, the probability model of (Ud1 , Vd2) is
a “wrong” model for the joint distribution (U, V). However, the
“wrong” model of (Ud1 , Vd2) can be very useful in many ways. In
particular, we show below how the three key elements described
at the end of Section 2 are achieved from this approach:

(a) Universality: The important message from (3.1) is that
one can approximate the joint distribution of and hence the
dependence in (U, V) through that in (Ud1 , Vd2). Although the
dependence in the joint distribution of (U, V) can be arbi-
trarily complicated, when d1 and d2 are large, we expect a
good approximation from discrete variables (Ud1 , Vd2) where
the approximation error is exponentially small. In terms of
testing independence, this means although the joint distribution
of (U, V) can be arbitrarily close to independence, due to the
filtration feature of the sequence, one can always detect the
dependence when d1 and d2 are large to achieve universality.

(b) Identifiability: As we explained in Section 2, one crucial
challenge in distribution-free dependence detection is identi-
fiability. Without models and parameters, dependence is not a
tractable target. On the other hand, (Ud1 , Vd2) can only take a
finite 2d1+d2 possible values, which leads to a partition of the
scatterplot of data into a 2d1 × 2d2 contingency table. With this
consideration, the truncation of the binary expansions turns
the problem on dependence, which is unidentifiable under the
distribution-free setting, into a problem over a contingency
table, which is fully identifiable. In terms of testing, when we
begin without any assumptions about the joint distribution,
there is no explicit way to write out the alternative likelihood
under dependence. However, at each depths d1 and d2, due to
the discreteness, the class of alternative distributions is restricted
to those over the contingency table, which has an explicit distri-
bution and has cell probabilities as identifiable parameters for
inference (Agresti and Kateri 2011; Fienberg 2007).

(c) Uniformity: As a consequence of identifiability, we can
avoid the problem of nonuniform consistency described in Sec-
tion 2. At any depths d1 and d2, one can write out the TV
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distance between an alternative distribution and the null distri-
bution in terms of the cell probabilities in the contingency table
model. We are thus able to show the consistency and optimality
of the proposed Max BET procedure in Section 4.2 for alterna-
tive distributions whose TV distances from the independence
null is at least δ, for any δ > 0.

The above considerations motivate us to propose the BEStat
in studying the dependence between U and V in a distribution-
free setting. Formally, we define BEStat as follows:

Definition 3.2. We call statistics as functions of finitely many
Bernoulli variables from marginal binary expansions the BEStat.

Similarly, for the problem of detecting dependence from
independence in a distribution-free setting, we define the BET
framework as follows.

Definition 3.3. We call the testing framework based on the
binary expansion filtration approximation up to certain depth
the BET.

In the context of testing independence in bivariate distribu-
tions, the BET at depths d1 and d2 is to test the independence
of Ud1 and Vd2 , which we refer to as (d1, d2)-independence
and which is equivalently defined in Ma and Mao (2019) for
scanning statistics. Formally, denote the bivariate uniform dis-
tribution over { 0

2d1 , . . . , 2d1 −1
2d1 }×{ 0

2d2 , . . . , 2d2 −1
2d2 } by P0,d1,d2 . For

some 0 < δ ≤ 1, we consider

H0,d1,d2 : P(Ud1 ,Vd2 ) = P0,d1,d2 v.s. H1,d1,d2 :

TV(P(Ud1 ,Vd2 ), P0,d1,d2) ≥ δ. (3.2)

Not rejecting the null hypothesis in the BET at depths
(d1, d2) thus indicates that there is no strong evidence against
the null hypothesis of independence between U and V up
to depths d1 and d2 in the binary expansions. Note that this
interpretation is weaker than claiming independence between
U and V : the dependence can occur at some larger (d1, d2)
in the Op(2− min {d1,d2}) remainder term in (3.1). However,
as described in Section 2, claiming exact independence with
finite samples and without any restriction on the alternative
is impossible. On the other hand, this weaker hypothesis of
approximate independence helps us to avoid the uniform
consistency problem in the dependence detection under the
distribution-free setting and provides reliable power for a large
class of alternatives. To see the gains from this trade-off, one can
compare our results in Section 4.2 with those in Section 2.

We remark here that the filtration in approximating depen-
dence is not unique. For example, one can consider the filtra-
tion corresponding to orthogonal polynomials rather than the
binary expansion. However, the σ -field in the binary expansion
filtration has a few important advantages to facilitate studies of
dependence.

(a) Finiteness of σ -fields: For the σ -field at each depths d1
and d2, the number of events is 2d1+d2 − 1, which is finite. This
is because interactions of binary variables are at most binary. If
we consider some other filtration (e.g., orthogonal polynomials)
for the approximation of dependence, then the σ -field might not
be of finitely many events and can be much more complicated.

(b) Uncorrelatedness implying independence: Although
uncorrelatedness usually does not imply independence, it is well
known that it does for two binary variables. This property can
greatly simplify studies of dependence in filtration. Again, if we
consider some other filtration (e.g., orthogonal polynomials)
for the approximation of dependence, then quantifying the
dependence between variables in the σ -field can be much more
complicated.

The above considerations also work similarly for the case
when the marginal distributions are unknown. To study the
binary expansion in this case, suppose the sample size is
n = 2K for some K > 0 for easy explanation. With the
marginal empirical CDF transformations, the ith observation
in the empirical copula are Ûi and V̂i whose marginal
distribution is Uniform{ 1

2K , . . . , 2K

2K }. Now let Â1,i = I(Ûi ∈
(1/2, 1]), . . . , ÂK,i = I(Ûi ∈ ∪2K−1

k′=1 ( 2k′−1
2K , 2k′

2K ]). It is easy
to see that for each fixed i, Âk,is are independent, and Ûi =

1
2K + ∑K

k=1
Âk,i
2k . Therefore, the binary expansion filtration can

be similarly defined, and the BET at depths d1 and d2 is to test
the independence of Ûd1,i = ∑d1

k=1
Âk,i
2k and V̂d2,i = ∑d2

k=1
B̂k,i
2k

H0,d1,d2 : For each i, Ûd1,i and V̂d2,i are independent. (3.3)

The interpretation of this null hypothesis is that for each obser-
vation, the row assignment and column assignment to the con-
tingency table are independent, as in classical categorical data
analysis (Agresti and Kateri 2011; Fienberg 2007). When ÛK,i
and V̂K,i are independent for each i, the observed ranks are
independent.

We explain the details of these tests in Sections 3.2 and 4.
We remark here that although copula theory is well developed
(Nelsen 2007), we are not aware of any filtration approach in
the literature. We also remark here that tests of approximate
independence are also considered in a very recent paper (Ma
and Mao 2019) for scanning purposes, in which a filtration idea
is implicitly described. In this article, our goal is to formally
develop the framework of BEStat. We shall compare the theory
and methods in both papers in Section 4.4.

3.2. Revisiting the Classical Theory for Contingency Tables

We start our analysis by first revisiting the model and theory
of a general contingency table with r rows and c columns of
n iid samples. The parameters of interest are p = {pij, i =
1, . . . , r, j = 1, . . . , c}, and the cell counts are n = {nij}. The
only constraint is on the totals

∑
i,j pij = 1 and

∑
i,j nij = n. Two

most important models for the likelihood are as follows (Agresti
and Kateri 2011; Fienberg 2007):

(a) When there is no restriction on marginal totals, the joint
distribution of the cell count vector N is multinomial (with the
convention 00 = 1): with C1(n) = n!∏

i,j nij! ,

p(N = n|p) = C1(n)
∏
i,j

pnij
ij . (3.4)

(b) Condition on positive row and column totals nr = {ni· =∑
j nij, i = 1, . . . , r} and nc = {n·j = ∑

i nij, j = 1, . . . , c},
for i < r and j < c, with the reparameterization θij =
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pijprc
picprj

and normalizing constant h1(nr , nc, θ), we have p(N =
n|θ , nr , nc) = C1(n)h1(nr , nc, θ)

∏
i,j θ

nij
ij (Cornfield 1956). Note

that under independence θij = 1, and the distribution is (cen-
tral) multivariate hypergeometric

p(N = n|nr , nc) = C1(n)h1(nr , nc) =
∏

i ni·! ∏j n·j!
n! ∏i,j nij! . (3.5)

With the above distributions, tests of independence for a con-
tingency table can be done through classical methods such as
χ2 tests, Fisher’s exact tests, and likelihood ratio tests (LRT).
For the nonparametric dependence detection problem, the BET
with these tests are uniformly consistent for any depths d1
and d2. However, these classical methods have two important
limitations on power and interpretability:

(a) The minimal sample size for classical tests to have reliable
power is known (Agresti and Kateri 2011; Fienberg 2007) to
be about the size of the contingency table O(2d1+d2). However,
recent developments (Acharya, Daskalakis, and Kamath 2015)
show that the optimal lower bound of this sample size require-
ment is O(2

d1+d2
2 ). This result indicates that classical tests may

suffer substantial power loss in dependence detection, especially
when d1 and d2 are large. For a well-known example, when the
contingency table contain many empty cells, LRT and χ2 tests
will fail to work.

(b) The rejections from classical tests are not very inter-
pretable. Even if we can claim significant dependence with a
classical test, the test does not provide information about how
the variables are dependent.

One intuition of the above limitations in classical tests is
that each cell in a contingency table is considered in an iso-
lated manner, thus the information between cells is somehow
lost. To improve classical tests, we consider grouping the cells
together to improve the power and interpretability. Such group-
ing process is effectively achieved through the BID described in
Section 3.3.

3.3. Binary Interaction Design: Reparameterization of the
2d1 × 2d2 Contingency Table Likelihood

We now turn to the case when the contingency table is generated
by the binary expansion up to depths d1 and d2 as described
in Section 3.1, so that the table has 2d2 rows and 2d1 columns
(assuming U on the horizontal axis and V on the vertical axis).
To provide a general theory for contingency tables, in this sub-
section we do not restrict the total probability of each row and
column being the same (which happens when Ais and Bjs are
both iid Bernoulli(1/2)). However, in this subsection, we shall
assume that all cell probabilities are positive.

To combine the cell information, we consider the σ -field
generated from the binary expansion filtration. We explain
in the known marginal distribution case first since it is
similar for the unknown marginal distribution case. With d1
Bernoulli variables Ak, k = 1, . . . , d1 and another d2 Bernoulli
variables Bk, k = 1, . . . , d2 (again in this subsection we do
not assume them to be independent and symmetric), consider
two general discrete variables defined by Ud1 = ∑d1

k=1
Ak
2k

and Vd2 = ∑d2
k=1

Bk
2k . The σ -field here is σ(Ud1 , Vd2) =

σ(A1, . . . , Ad1 , B1, . . . , Bd2) and is generated by 2d1+d2 − 1
Bernoulli variables resulting from interactions between Ais and
Bjs. We shall use the equivalent binary variables Ȧi = 2Ai − 1
and Ḃj = 2Bj − 1 since the interaction between them can
be conveniently written as products. For example, the event
{A1 = 1, B1 = 1} ∪ {A1 = 0, B1 = 0} is equivalent to the event
{Ȧ1Ḃ1 = 1}.

Note that each of these binary interaction variables leads
to a partition of the unit square [0, 1]2 and two groups of
cells according to whether the interaction is positive. Moreover,
for each interaction in the σ -field, the number of cells in the
regions where it takes value 1 (and −1) is exactly 2d1+d2−1. This
fact can be explained by the BID equation (Theorem 3.4), and
it facilitates the definition of interaction odds ratio (IOR) as
in Definition 3.6 as well as the reparameterization with IOR.
The IORs group the cell information together and separate the
marginal and joint information in the multinomial likelihood.
See Figure 2.

Note also that the 2d1+d2 − 1 binary variables in the σ -field
can be categorized into two classes: the variables of the form
Ȧk1 . . . Ȧkr or Ḃk′

1
. . . Ḃk′

t
will be referred to as marginal inter-

actions since they only involve the marginal distributions. On
the other hand, the variables of the form Ȧk1 . . . Ȧkr Ḃk′

1
. . . Ḃk′

t
with r, t > 0 will be referred to as cross-interactions since they
contain information of both Ud1 and Vd2 .

In explanation of the theory, we use the following binary
integer indexing for related quantities: denote the Bernoulli
random vectors in the binary expansion by A = (A1, . . . , Ad1)

and B = (B1, . . . , Bd2), and denote vectors of length d1 and d2
with entries 0s and 1s by a and b. The probability of each of the
2d1+d2 cells can then be written as p(ab) = P(A = a, B = b) with
(ab) being the concatenation of a and b. Now let the integer c
determined by c = ∑d1

i=1 ai2d1+d2−i+∑d2
j=1 bj2d2−j. Let p be the

2d1+d2 -dimensional vector of probabilities whose (2d1+d2 −c)th
entry is p(ab).

For the binary variables in σ(Ȧ1, . . . , Ȧd1 , Ḃ1, . . . , Ḃd2), we
also denote their expected values with binary integer index
as follows. For E[Ȧk1 . . . Ȧkr Ḃk′

1
. . . Ḃk′

t
], r = 1, . . . , d1, t =

1, . . . , d2, we denote it by E(ab) where a is a d1-dimensional
binary vector with 1s at k1, . . . , kr and are 0s otherwise, and b is
a d2-dimensional binary vector with 1s at k′

1, . . . , k′
t and are 0s

otherwise. Note here that E(00) = E[1] = 1. We also write the
interaction as a product of binary variables Ȧk1 . . . Ȧkr Ḃk′

1
. . . Ḃk′

t
as ȦaḂb. With c defined in the previous paragraph, let E be the
2d1+d2 -dimensional vector of expected values whose (c + 1)th
entry is E(ab).

The above notation also applies to observed quantities: with
the total n observations, the cell counts are denoted by n(ab).
The collection of all n(ab)s is denoted by N and is indexed as
in p. We also denote the sum of observed binary interaction
variables by S(ab) = ∑n

i=1 Ȧa,iḂb,i with S(00) = n. The collection
of all S(ab)s is denoted by S and is indexed as in E. We shall refer
S(ab) as the symmetry statistic for ȦaḂb as they can be regarded
as the differences between the numbers of points in positive and
negative regions. Thus, S(ab) is a statistic about symmetry. See
Figure 2.



1626 K. ZHANG

Total: S(000)=Σn(ab)= 64; Σp(ab)=1
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Marginal Interaction A⋅ 2: S(010)= 4
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Marginal Interaction A⋅ 1: S(100)= 8
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Marginal Interaction A⋅ 1A
⋅

2: S(110)= 0
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Marginal Interaction B⋅ 1: S(001)= 2
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Cross Interaction A⋅ 2B
⋅

1: S(011)= −14
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Figure 2. The binary interaction design (BID) at depths d1 = 2 and d2 = 1 with n = 64 observations. The number of observations in each cell is presented in the top left
plot. There are seven nontrivial binary variables in the σ -field, whose positive regions are in white and whose negative regions are in blue. Symmetry statistics S(ab) are
calculated for these four marginal interactions and three cross interactions. For example, S(011) = n(111) −n(110) −n(101) +n(100) +n(011) −n(010) −n(001) +n(000) =
−14.

With the above notation, we establish the equation con-
necting the contingency table distribution and the inter-
actions of binary variables in the σ -field. The equation is
established through H = H2d1+d2 being the Sylvester’s
construction of Hadamard matrix (Sylvester 1867). We shall
refer this equation as the BID equation (name coined in
Zhao et al. 2019).

Theorem 3.4.

(a) Population version of the BID equation: E = Hp.
(b) Sample version of the BID equation: S = HN.

The Hadamard matrix H is referred to as Walsh matrix in
literature of signal processing, where a linear transformation
with H as in Theorem 3.4 is referred to as the Hadamard
transform (Lynn 1973; Golubov et al. 2012; Harmuth 2013). The
earliest referral to the Hadamard matrix we found in statistical
literature is Pearl (1971). The Hadamard matrix is also closely
related to the orthogonal full factorial design (Box, Hunter, and
Hunter 2005; Cox and Reid 2000). In the context of dependence
detection, this transform maps the cell domain (in p or N) to
the interaction domain (in E or S). Thus, the information in
individual cells can be grouped together to provide informa-
tion about global dependency. Although theory and methods
for contingency tables are well-developed, we are not aware of
similar approach in related literature.

To see the importance of the BID equation and the symmetry
statistic S(ab), we introduce some more notation here. We label
the first to 2d1+d2 th row (and column) of H with binary integer
indices from (0d1+d2) to (1d1+d2). Denote (ab) = (11) − (ab)

to be the binary conjugate, or logical negation of (ab), that
is, (010) = (101). With the above notation, we summarize

some useful properties of the Hadamard matrix H2d1+d2 in the
following proposition (Golubov et al. 2012).

Proposition 3.5.

(a) H2d1+d2 is symmetric. The entry in H2d1+d2 at the (a′b′)th
row and (ab)th column is (−1)(a′b′)T(ab).

(b) H2d1+d2 has orthogonal columns: H−1
2d1+d2 = 1

2d1+d2 H2d1+d2 .
(c) Hadamard matrices can be defined recursively: H2d1+d2+1 =

H2d1+d2 ⊗ H2.

Part (b) of Proposition 3.5 implies that N = 1
2d1+d2 HS, that

is, n(ab) = 1
2d1+d2 HT

(ab)
s where H(ab) is the (ab)th column of H.

With the above notation and transformation of variables, and by
part (a) of Proposition 3.5, the multinomial distribution in the
contingency table (3.4) can be written as

p(N = n|p) = n!∏
a,b n(ab)!

∏
a,b

( ∏
a′,b′

p(−1)(a′b′)T (ab)

(a′b′)

) s(ab)

2d1+d2
.

(3.6)
We are now ready to introduce the IOR:

Definition 3.6. We call λ(ab) = ∏
a′,b′ p(−1)(a′b′)T

(ab)

(a′b′) the IOR with
respect to the interaction ȦaḂb. Denote the vector of λ(ab)s by λ

and order the entries in the same way as in E.

For each corresponding interaction, the IOR can be regarded
as the ratio of the product of all white cell probabilities to the
product of all blue cell probabilities. There are three cases for
the IOR λ(ab):

(a) When a = 0 and b = 0, λ(00) = ∏
a′,b′ p(a′b′). Note that

the term λ

n
2d1+d2
(00) does not involve N and is constant.
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(b) When a = 0 but b �= 0 (or when b = 0 but a �= 0),
then λ(ab) is an MIOR quantifying the balance in the marginal
interaction variable Ȧa (or Ḃb). For example, when d1 = 2 and
d2 = 1, λ(110) = p(111)p(110)p(001)p(000)

p(101)p(100)p(011)p(010)
which is related to the

distribution of Ȧ1Ȧ2. Note also that there are 2d1+2d2−2 MIORs
at depths d1 and d2.

(c) When a �= 0 and b �= 0, then λ(ab) is a CIOR quantifying
the balance in the cross interaction variable ȦaḂb. For example,
when d1 = 2 and d2 = 1, λ(111) = p(111)p(100)p(010)p(001)

p(110)p(101)p(011)p(000)
which

is related to the distribution of Ȧ1Ȧ2Ḃ1. Note also that there are
(2d1 − 1)(2d2 − 1) CIORs at depths d1 and d2, which matches
the degree of freedom for the χ2 test.

An important observation is that with the IOR, (3.6) becomes

p(S = s|λ) = C2(s)h2(λ) exp

⎛
⎝∑

a�=0

s(a0) log λ(a0)

2d1+d2

+
∑
b�=0

s(0b) log λ(0b)

2d1+d2
+

∑
a�=0
b �=0

s(ab) log λ(ab)

2d1+d2

⎞
⎟⎟⎠ ,

(3.7)

where C2(s) = n!∏
a,b n(ab)! and h2(λ) = λ

n
2d1+d2
(00) . Therefore,

we reparameterize the distribution in (3.4) as a (2d1+d2 − 1)-
dimensional exponential family with log-IORs as natural
parameters, and the symmetry statistics are complete sufficient
statistics for log-IORs. This fact is the basis of the binary
expansion approach.

Similarly to the BID equations, we have a logarithm version
of the BID equation:

Theorem 3.7. Denote the vectors of the logarithm of entries in
λ and p by λl and pl, respectively. We have λl = Hpl.

One important implication of (3.7) and Theorem 3.7 is that
all information about dependence is contained in CIOR:

Theorem 3.8. Ud1 and Vd2 are independent if and only if λ(ab) =
1 for all CIORs.

Theorem 3.8 shows that the null hypothesis of the test (3.2)
is equivalent to

H0,d1,d2 : For all CIORs at depths d1 and d2, λ(ab) = 1. (3.8)

We summarize the advantages of the reparameterization in (3.7)
and the test (3.8):

(a) Compared to the conventional parameterization in (3.4),
the reparameterization in (3.7) is much more interpretable: note
that the cell probabilities in p carry both marginal and joint
information. On the other hand, the parameterization with λ

extracts all dependence information in CIORs and separates it
from the marginal information in MIORs. Thus, CIORs are to
contingency tables as correlations are to multivariate normal
distributions. Tests of independence can therefore focus on
CIORs, as we study in details in Section 4.

(b) The sufficient statistics in the conventional param-
eterization are the cell counts n(ab)s, whose distribution is
Binomial(n, p(ab)). This means that when n is small, one often
has n(ab) = 0 for many cells. These empty cells cause problems
in the conventional tests. However, with the reparameterization
(3.7), the sufficient statistics S(ab)s instead have (after a linear
transformation) a binomial distribution whose probability of
success is the sum of 2d1+d2 − 1 cell probabilities. Therefore, by
grouping the cells, S(ab)s provide much more information than
n(ab)s and avoid the well-known problem of insufficient samples
in many binning methods.

(c) Note that each cross interaction in the filtration corre-
sponds to a unique CIOR, which measures some form of depen-
dency. In Section 4, we show that this consideration together
with the number of CIORs (2d1 − 1)(2d2 − 1) lead to an
orthogonal decomposition of the χ2 test.

(d) The BID equation in Theorem 3.4 can be generalized
for any three-way or multiway contingency table whose size
is a power of 2. This fact allows extensions of the IOR
reparametrization and the BET for testing independence of
random vectors.

When the marginal distributions are unknown, for each
observation i, we can similarly define ̂̇Ak,i = 2Âk,i − 1, ̂̇Bk,i =
2̂Bk,i − 1, and Ŝ(ab) = ∑n

i=1
̂̇Aa,îḂb,i for the cross interaction̂̇Aa

̂̇Bb. Now note the following simple corollaries from Theo-
rem 3.4: (a) nr and nc are invertible functions of Ŝ(a0)s and Ŝ(0b)s
through a univariate BID equation, and (b) the bivariate sample
BID equation holds for Ŝ and n. With these facts, by using θ and
the proof of Theorem 3.8, as well as conditioning on Ŝ(a0) and
Ŝ(0b) in (3.4), we have

p(̂S(ab) = ŝ(ab)|λ(ab), Ŝ(a0), Ŝ(0b))

= C2(̂s(ab))h3(λ(ab)) exp
( ∑

a �=0
b �=0

ŝ(ab) log λ(ab)

2d1+d2

)
(3.9)

for some function h3(λ(ab)) as a normalizing constant.
Note that by conditioning on the counts of marginal interac-

tions, the MIORs are eliminated, and we can focus on the CIORs
for the analysis of dependence. Indeed, either by comparing
(3.5) and (3.9) or by the proof of Theorem 3.8, we see that Ûd1,i
and V̂d2,i are independent for each i if and only if λ(ab) = 1 for
all a �= 0 and b �= 0. Therefore, the tests of independence are
unified in both of the cases of known and unknown marginal
distributions to be (3.8).

We remark here that reparameterization of the contingency
table likelihood into odds ratios has been extensively studied
in the past Agresti (1992). The very recent paper Ma and Mao
(2019) also considered a factorization under the null hypothesis
of independence. However, we are not aware of similar ideas of
the connection to the Hadamard transform and the concept of
IOR. Compared to existing analyses of contingency tables, the
new reparameterization is more global to use all the observa-
tions. See a detailed discussion in Section 4.4.

We also remark here that we are able to take advantage of the
Hadamard transform only because the size of the contingency
table is a power of 2, which is a result of Ȧi’s and Ḃj’s in the
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binary expansions. If we were to take a different approach or to
partition [0, 1]2 into different sizes, then we might not be able to
have similar theory. This advantage is an important motivation
of the binary expansion approach.

4. The Max BET Procedure and Its Properties

4.1. BET as an Multiple Testing Problem

In this section, we return to the dependence detection problem,
where we partition [0, 1]2 at the binary fractions based on Theo-
rem 3.1. Therefore, the row and column total probabilities in the
2d1 ×2d2 contingency table are 2−d1 and 2−d2 , respectively when
the marginal distributions are known, and the row and column
total counts in the contingency table are n2−d1 and n2−d2 ,
respectively when the marginal distributions are unknown and
when n is a multiple of 2max{d1,d2}.

The discussions in Section 3 suggest test statistics based on
interactions S(ab) or Ŝ(ab). Direct application of the MLE of λ(ab)

can result in similar disadvantages as χ2 tests as we discuss later.
We instead construct a simple but optimal test statistic with the
maximal symmetry statistics max |S(ab)| or max |̂S(ab)| for a �= 0
and b �= 0.

The key observations of S(ab) are summarized below.

Theorem 4.1. The following are equivalent:

(a) Ud1 and Vd2 are independent.
(b) E[ȦaḂb] = 0 for a �= 0 and b �= 0.
(c) (S(ab) + n)/2 ∼ Binomial(n, 1/2) for a �= 0 and b �= 0.
(d) E[S(ab)] = 0 for a �= 0 and b �= 0.
(e) E = e00 where e00 is the 2d1+d2 -dimensional standard basis

(1, 0, . . . , 0)T .

Note here that in Theorem 4.1, the homogeneity in the distri-
bution of S(ab) is due to the symmetry in Ȧa and Ḃb in the binary
expansion. Indeed, the main intuition of Theorem 4.1 is the
symmetry of independence: when Ud1 and Vd2 are independent,
the counts of observations in the positive and negative regions
should be similar for any cross interaction. On the other hand,
when Ud1 and Vd2 are not independent, we expect some strong
asymmetry between the numbers of points in white or blue.

When the marginal distributions are unknown, we have sim-
ilar results on symmetry assuming n is a multiple of 2max{d1,d2}.
When Ûd1,i and V̂d2,i are independent for each i = 1, . . . , n,
the distribution of (̂S(ab)+n)/4 is Hypergeometric(n, n/2, n/2).
An intuitive way to understand this is that if we assign all n
observations into a 2 × 2 table according to ̂̇Aa,i = ±1 and̂̇Bb,i = ±1, Ŝ(ab) is the difference in counts of the interaction̂̇Aa,îḂb,i being +1 or −1. We show below that the converse is also
true.

Theorem 4.2. When n is a multiple of 2max{d1,d2}, the following
are equivalent:

(a) For each i, Ûd1,i and V̂d2,i are independent.
(b) (̂S(ab) + n)/4 ∼ Hypergeometric(n, n/2, n/2) for a �= 0 and

b �= 0.
(c) E[̂S(ab)] = 0 for a �= 0 and b �= 0.

Theorems 4.1 and 4.2 reduce the test of independence to tests
of marginal properties of E[S(ab)] and E[̂S(ab)]. In particular,
these results show the equivalence between the BET at depths d1
and d2 and a multiple testing problem: the testing problems in
(3.2) and (3.3) are equivalent to testing if all cross interactions
up to depths d1 and d2 are symmetric. The advantage of this
consideration is two-folded: (a) we reduce the test of a joint
distribution (difficult) to that of marginal ones (simple) and (b)
we reduce the test of dependence (difficult) to that of symmetry
(simple).

Note that the equivalent multiple testing problem is about
controlling the family-wise error rate (FWER): rejecting any
symmetry results in the rejection of independence. The simplest
FWER control is the Bonferroni procedure, where the adjusted
p-value is the minimum of 1 and the product of (2d1 −1)(2d2 −1)

and the smallest p-value of all marginal tests. We refer this
procedure as the Max BET.

We illustrate the Max BET procedure at depths d1 = 2
and d2 = 1 with the 64 samples studied in Section 3.3. The
procedure consists of the following steps, as shown in Figure 2:

Step 1: We count white and blue points for each cross interac-
tion Ȧ2Ḃ1, Ȧ1Ḃ1, and Ȧ1Ȧ2Ḃ1 for d1 = 2 and d2 = 1.

Step 2: Among these three cross interactions, we look for the
one with the strongest asymmetry, which is Ȧ2Ḃ1 with
25 in white and 39 in blue. The symmetry statistic is
S(011) = −14. The binomial p-value is 0.103.

Step 3: Use the Bonferroni adjustment to multiply 3 and get the
overall p-value of the Max BET at depths d1 = 2 and
d2 = 1 to be 0.310.

Would the Bonferroni procedure be overly conservative? Our
observation is no because of the orthogonality of the symmetry
statistics. A formal study of optimality of the Bonferroni proce-
dure is in Section 4.2. Here, we state some results on the joint
properties of symmetry statistics which provide some intuition.

Theorem 4.3.

(a) When the marginal distributions are known and Ud1 and
Vd2 are independent, the symmetry statistics S(ab)s are pair-
wise independent.

(b) When the marginal distributions are unknown and for each
i, Ûd1,i and V̂d2,i are independent, Ŝ(ab)s are uncorrelated.

(c) The classical χ2 test statistic C is C = 1
n

∑
a �=0,b�=0 Ŝ2

(ab)
.

Part (a) and (b) of Theorem 4.3 imply that due to the orthog-
onality in the BID, each symmetry statistic provides nonredun-
dant information. Furthermore, part (b) and (c) of Theorem 4.3
imply that the (2d1 − 1)(2d2 − 1) sample symmetry statistics
Ŝ(ab)s form an orthogonal decomposition of the χ2 test statistic
whose degrees of freedom is also (2d1 − 1)(2d2 − 1). Therefore,
instead of aggregating the information through sum of squares
in the χ2 statistic, we here take a divide-and-conquer approach.
To follow up the discussions in Section 3.2, we summarize the
advantages of our approach below and describe the details in
Sections 4.2 and 4.3.

(a) In Arias-Castro, Candès, and Plan (2011) and Barnett,
Mukherjee, and Lin (2017), it was noted that when the number
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of hypotheses is large and the signals are rare and weak, using
a Bonferroni type of multiple comparison control can substan-
tially outperform χ2 tests. In our context, this means that when
d1 and d2 are large and when the dependence is through only a
few cross interactions, the χ2 test is “wasting” many degrees of
freedom. Instead, using the Max BET can help discover weaker
dependence.

(b) Interpretability. One major advantage of using cross inter-
actions over the χ2 test is that the grouping arrangement of the
white and blue cells for each interaction helps indicate the pat-
tern of the dependence, as described earlier in Section 3.3. When
the dependence is through only a few of cross interactions, with
the rejection of the Max BET, we can identify the strongest
interactions between the variables. These strongest interactions
can in turn help describe the dependence.

4.2. Power and Optimality of the Max BET

In this section, we study the power of the Max BET when the
marginal distributions are known. The uniform consistency of
the Max BET at any depths d1 and d2 follows from classical anal-
ysis of contingency tables. Moreover, despite the conservative
nature of the Bonferroni approach, we show below that the Max
BET can be optimal in power for a large collection of alternative
distributions:

Theorem 4.4. For any fixed 0 < δ < 1/2, denote by HR
1,d1,d2

the
collection of alternative distributions P(Ud1 ,Vd2 ) such that

1. TV(P(Ud1 ,Vd2 ), P0,d1,d2) ≥ δ;
2. ‖E − e(00)‖∞ ≥ √

d1 + d22−(d1+d2)/4‖E − e(00)‖2.

Consider the testing problem

H0,d1,d2 : P(Ud1 ,Vd2 ) = P0,d1,d2 v.s. H1 : P(Ud1 ,Vd2 ) ∈ HR
1,d1,d2

.
(4.1)

For large d1 and d2, we have the following:

1. For any ε > 0, the Max BET with size α needs n =
O(2(d1+d2)/2/δ2) samples to have power 1 − ε.

2. Let Tα be the collection of all measurable size-α tests: Tα =
{Tα : P0,d1,d2(Tα = 1) ≤ α}. If n = o(2(d1+d2)/2/δ2), then
there ∃0 < ε′ < 1 − α such that

inf
Tα∈Tα

sup
P(Ud1 ,Vd2 )∈HR

1,d1,d2

P(Ud1 ,Vd2 )(Tα = 0) ≥ 1 − α − ε′.

(4.2)

The magnitude of the minimal sample size requirement has
been carefully studied in statistics, information theory, and
machine learning. It describes the minimal number of samples
to uniformly detect certain departure from the independence
and in turn indicates the uniform power of the test. Part 1 of
Theorem 4.4 states that such a requirement for Max BET is
O(2(d1+d2)/2/δ2), which matches the optimal rate in Paninski
(2008) and Acharya, Daskalakis, and Kamath (2015). Moreover,
part 2 of Theorem 4.4 asserts that if the sample size grows at any
smaller rate, then for any test, there exist alternatives such that
the power of this test is strictly bounded away from 1. In this
sense, the Max BET is minimax in the sample size requirement.

Note that the consistency of χ2 tests is shown in Agresti
and Kateri (2011) and Fienberg (2007) to require n >

2d1+d2 . This requirement is much higher than the magnitude
O(2(d1+d2)/2/δ2) in Theorem 4.4 and indicates that the power
of χ2 test can be much less than that of the Max BET. One
intuitive explanation of this fact is that χ2 tests rely on good
estimates of each cell probability in the table, while in the Max
BET S(ab)s are based on grouped cells to use all n observations.

The condition ‖E − e(00)‖∞ ≥ √
d1 + d22−(d1+d2)/4‖E −

e(00)‖2 compares the strongest signal to the overall signal in
the space of alternatives and indicates the signals to take on
a spiky form. It can also be regarded as (but is more general
than) a sparsity constraint, as it can be satisfied when at most

1
d1+d2

2(d1+d2)/2 (out of (2d1 − 1)(2d2 − 1)) cross-interactions
have nonzero means. Under this generalized form of sparsity,
the Bonferroni approach is not overly conservative. In particu-
lar, Theorem 4.4 is consistent with the results in Arias-Castro,
Candès, and Plan (2011) under the ANOVA setting that when
the signals are square-root sparse, the max test has better power
than the χ2 test. Note also that such a condition over E does
not imply sparsity in p. Therefore, the optimal rate in Paninski
(2008) and Acharya, Daskalakis, and Kamath (2015) still applies
and is attained by the Max BET.

The sample size requirement in Theorem 4.4 also indicates
that for a given sample size n, one can expect to detect depen-
dence up to a depth of about log2 n. This result again explains the
problem of nonuniform consistency: one cannot expect one test
to uniformly detect all types of dependency, and with n samples
one can only reliably detect dependence up to a depth of about
log2 n in the binary expansion filtration approximation. Note
again that with the χ2 test the depth can only go up to about
1
2 log2 n, which means it may not have good power for many
forms of dependency.

4.3. Interpretation of the Max BET

In this section, we explain the interpretations of the BET, that
is, we ask when the BET at depths d1 and d2 is rejected, where
is the dependence? The BET can explain this question explicitly
with the cross interactions, because it returns with the 50% area
with significantly more points.

We will explain some common patterns of dependence in
simulation studies in Section 6. We will also illustrate the inter-
pretation of BET with real data in Sections 7 and 8. In what
follows, we revisit the BEX as an example. See Figure 3. Note
that with probability 1, samples of (Xd, Yd) on BEXd all fall
in the positive region for ȦdȦd+1ḂdḂd+1. This is the strongest
asymmetry of BEXd, and the p-value for the Max BET at d1 =
d2 = d + 1 is 2(2d+1 − 1)2/2n which can be very small when n
is much larger than 2d. Note that with the rejection of the Max
BET at d1 = d2 = d + 1, the cross interaction ȦdȦd+1ḂdḂd+1
is also found to present the dependency between Xd and Yd.

With the above considerations, we explain the paradox fol-
lowing Proposition 2.1. For (Xd, Yd) on BEXd, let Ud and Vd
be the truncated variables in the marginal binary expansion of
Xd and Yd, respectively. Note that Ud and Vd are independent.
However, Ud+1 and Vd+1 are dependent, as is evidenced by the
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BEX with d=1 and BET with A⋅ 1A
⋅

2B
⋅

1B
⋅

2 BEX with d=2 and BET with A⋅ 2A
⋅

3B
⋅

2B
⋅

3 BEX with d=3 and BET with A⋅ 3A
⋅

4B
⋅

3B
⋅

4 BEX with d=4 and BET with A⋅ 4A
⋅

5B
⋅

4B
⋅

5

Figure 3. The bisection expanding cross (BEX) at d = 1, . . . , 4 captured in the positive regions of the BET, which illustrates the interpretation of dependency in the BET.

small p-value. These facts thus explain the seeming paradox: if
we are at depths d1 = d2 = d, then the fact that Ud and Vd are
independent implies that Xd and Yd are (d, d)-independent, that
is, nearly independent. On the other hand, if we are at depths
d1 = d2 = d + 1, then the small p-value of the BET implies
that Xd and Yd are strongly nonindependent. Therefore, being
strongly nonindependent or nearly independent depends on the
choice of depth, and there is no contradiction in this example.

4.4. Relations to Other Binning Methods

Although the binary expansion approach leads to multiscale dis-
cretization, the BET is different from existing tests in the binning
approach in several ways: (a) many existing binning methods
such as Reshef et al. (2011) and Kinney and Atwal (2014)
involve an optimization step in search of the optimal partition of
data under some criteria such as mutual information. This step
could be computationally expensive due to a search over many
overlapping partitions which contain redundant information.
Instead, the partitions based on interactions from the binary
expansion filtration are created in a systematic manner with a
natural hierarchy. The orthogonal design of interactions also
saves much redundant information and improves the power, (b)
many binning tests may have problems of insufficient obser-
vations in small bins, while in the BET all n samples are used
repeatedly in an orthogonal manner which has advantages both
for the level and power, (c) many binning tests return a p-value
based on permutations, which can again be computationally
more expensive than the BET.

We also compare the Max BET with recent work in scan
statistics (Walther 2010; Ma and Mao 2019) which are based
on rectangle scanning windows for local dependency. We note
that some scanning method can be formulated in terms of
the BEStat. For example, the FES in Ma and Mao (2019) up
to (2, 1)-independence can be regarded as the following three
tests of symmetry: E[Ȧ1Ḃ1] = 0, E[Ȧ2Ḃ1|Ȧ1 = 1] = 0,
and E[Ȧ2Ḃ1|Ȧ1 = −1] = 0. Compared to the three tests of
symmetry in the Max BET E[Ȧ1Ḃ1] = 0, E[Ȧ2Ḃ1] = 0 and
E[Ȧ1Ȧ2Ḃ1] = 0, FES can be regarded as a conditional version
of the BET. This conditional formulation can be advantageous
in detecting local dependency, but may not have optimal power
when the dependency is global and may have the insufficient
sample problem discussed above. In the Max BET, the grouping
of positive and negative regions does not necessarily result in a

region of the rectangle shape but is more capable of detecting
global dependency. Thus, each method has its advantageous
scenarios.

4.5. Issues in Practice

In this section, we discuss issues of the Max BET that can happen
in practice. The first issue is that we often do not know correct
depths d1 and d2 where the dependency may be present. To
address this issue, we propose a search over different depths
and a second stage multiplicity control. This proposal is based
on the observation that the approximation error in (3.1) is
Op(2− min{d1,d2}). Therefore, we can first test the hypotheses
(3.8) for d1 = d2 = d with d = 1, . . . , dmax, where dmax
reflects the desirable accuracy in the approximation. Then we
can apply some further FWER multiplicity control procedure
such as the Bonferroni method over the dmax tests to ensure the
overall FWER.

In practice, note that from (3.1) dmax = 4 provides good
approximation to the true distribution. Note also that to avoid
overlapping cross interactions in different depths, for each d ≥
2, one can test the symmetry of all added interactions involving
Ȧd or Ḃd, which are in σ(Ud, Vd) but not in σ(Ud−1, Vd−1). We
illustrate this procedure in Sections 6 and 7. The effect of such
multiplicity control on power is studied in Section 1.2 of the
supplementary materials.

Another practical issue for the empirical BET is that n might
not be a multiple of 2max{d1,d2}, that is, the column and row total
counts might not be equal in the 2d1 ×2d2 table. In this case, the
reparameterization in Section 3.3 still applies, and the test for
each cross interaction is still a Fisher’s exact test for 2 × 2 tables.
However, the distribution of a symmetry statistic (after a linear
transformation) is not necessarily Hypergeometric(n, n/2, n/2).
In general, instead of n/2s, the parameters for the hypergeo-
metric distribution are numbers of observations for which the
marginal interactions are positive. Thus, symmetry and homo-
geneity might be lost in this case. Nonetheless, the BET still
applies for any sample size n ≥ 2max{d1,d2} (otherwise there exist
cross interactions for which all observations are positive). More-
over, when n is large, one can use the normal approximation in
Kou and Ying (1996) for these tests.
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5. Connection to Computing

The binary expansion approach is partially motivated by its
close connections to the current computing system, which is
based on a binary architecture. By turning an electrical cir-
cuit “on” (represented by “1”) and “off ” (represented by “0”),
computers process information with unprecedented speed and
power. In particular, each decimal number in computing is
processed as a rounded version of its binary representation.
For example, calculations of 0.110 = 0.000110011 . . .2 are
based on a rounded version of 0.000110011 . . .2 to certain bits
(depending on a 32-bit or 64-bit computing system).

The key observation here is that the binary representation of
a decimal number is precisely its binary expansion! The {Ak}d1

k=1
and {Bk}d2

k=1 in the BEStat approach directly correspond to the
first d1 and d2 bits of U and V , respectively in current computing
systems. This fact implies that as long as a statistician is process-
ing data with a computing device (desktop, laptop, smartphone,
hand-held calculator, etc.), the {Ak}d1

k=1 and {Bk}d2
k=1 are given to

him/her automatically. These binary bits are hidden resources
of data available for statisticians from computers. We often use
bits for computing, but bits are data! We can construct statistics
and make inference with bits, and the BET at depths d1 and
d2 can be explicitly interpreted as testing whether the data are
independent up to the first d1 and d2 bits.

Moreover, the BEStat approach provides statisticians the
access to the most fundamental level of the computing system
and enables direct operations over bits. For example, the cell
locating process of a data point in the contingency table can be
done through some bitwise Boolean operations over the aks and
bks. Such bitwise operations are known to be computationally
efficient. We develop such a bitwise algorithm of the BET in
a separate paper (Zhao et al. 2019), where the procedure is
shown to improve the speed of existing methods by orders of
magnitude.

6. Simulation Studies

In this section, we use simulation studies to compare the Max
BET and existing nonparametric methods. For the Max BET,
we consider the empirical CDF transformation and consider the
second stage multiplicity control over depths with the Bonfer-
roni procedure with dmax = 4, as discussed in Section 4.5. For
comparison, we consider the Hoeffding’s D test from the CDF
approach, the distance correlation from the distance approach,
the default KNN-MI method from the binning approach, and
the very recent method of FES. We consider the χ2 test for the
same contingency table for the Max BET with d1 = d2 = 4 too.

We compare the power the above methods over common
dependency structures such as linear, parabolic, circular, sine,
and checkerboard, which are widely considered in evaluation
of tests of independence (Reshef et al. 2011; Heller, Heller,
and Gorfine 2012; Kinney and Atwal 2014; Filippi and Holmes
2015). We also consider the local dependency setting in Ma and
Mao (2019). The scenarios are designed by adapting those in Ma
and Mao (2019) with an emphasis on small sample performance
with a fixed sample size 128. The level of the tests is set to be 0.1.

Table 1. Simulation scenarios: at each noise level l = 1, . . . , 10, ε, ε′ , ε′′ iid∼
N (0, (l/40)2), and the following variables are all independent: U ∼ Uniform[0, 1],
ϑ ∼ Uniform[−π , π ], W ∼ Multi − Bern({1, 2, 3}, (1/3, 1/3, 1/3)), V1 ∼
Bern({2, 4}, (1/2, 1/2)), V2 ∼ Multi − Bern({1, 3, 5}, (1/3, 1/3, 1/3)), G1, G2

iid∼
N (0, 1/4).

Scenario Generation of X Generation of Y

Linear X = U Y = X + 6ε

Parabolic X = U Y = (X − 0.5)2 + 1.5ε

Circular X = cos ϑ Y = sin ϑ + 2.5ε′
+2.5ε

Sine X = U Y = sin(4πX) + 8ε

Checkerboard X = W + ε Y =
{

V1 + 4ε′ if W = 2
V2 + 4ε′′ otherwise

Local X = G1 Y =
{

X + ε if 0 ≤ G1 ≤ 1 and 0 ≤ G2 ≤ 1
G2 otherwise

We simulate each of the scenarios at 10 different noise levels to
present the whole range of power. The details of the setting are
summarized in Table 1.

The power curves of the six nonparametric tests of indepen-
dence are presented in Figure 4. Generally speaking, as is found
similarly in Ma and Mao (2019) and many other papers, no test
can uniformly dominate all others in all settings. In what follows,
we separate the detailed discussions of the first five scenarios
(linear, parabolic, circular, sine, and checkerboard) and the last
scenario (local).

In the first five scenarios where the dependency is global, we
notice that each existing method has shown some limitations:
in the linear and parabolic setting, the χ2 test provides the
least power. In the circular setting, distance correlation pro-
vides the least power. In the sine setting, KNN-MI provides
the least power. In the checkerboard setting, Hoeffding’s D and
FES provide the least power, which is partially due to the fact
that observations in this setting are locally independent. On
the other hand, the BET never provides the least power under
these common relationships. One reason of such robustness of
the BET is that the global dependency in these settings can
be well explained through only a few cross interactions in the
binary expansion, as can be seen in Figure 5 and in discussions
below. Therefore, the minimaxity in Theorem 4.4 guarantees
that the BET has reliable power against a large class of alternative
distributions. We also note here that to echo with the discussions
in Section 4.4, the BET has better power than FES in most of
these global dependency settings because of its global grouping
of cells. On the other hand, FES has better performance in the
local dependency setting, as we discuss below.

We now turn to the setting of the local relationship. The
BET does not perform well because observations in this setting
are independent outside the area with the local dependency.
Therefore, the global grouping of cells in the BET does not
provide more information than a few local cells. In this case,
the condition in Theorem 4.4 can be violated as many cross
interactions are asymmetric with weak signals. As shown in
Figure 4, this limitation of the BET can be remedied by scanning
based binning methods such as FES, which focuses on local
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dependency, or clustering based binning methods such as KNN-
MI, which performs well on mixtures of distributions.

One useful property of the BET is its interpretability of
dependency based on the interactions of binary variables, which
we illustrate in Figure 5. In each column, we present a simu-
lated dataset in each scenario with noise level l = 2. In the
first five scenarios, the global dependency in the data is well
explained by a corresponding cross interaction: observations
with linear dependency tend to fall in the positive region of̂̇A1

̂̇B1, observations with the parabolic dependency tend to fall
in the positive region of ̂̇A1

̂̇A2
̂̇B1, observations with circular

dependency tend to fall in the negative region of ̂̇A1
̂̇A2

̂̇B1
̂̇B2,

observations with the sine dependency tend to fall in the nega-
tive region of ̂̇A2

̂̇B1, observations with the checkerboard depen-
dency tend to fall in the positive region of ̂̇A1

̂̇A2
̂̇B1

̂̇B2. Since these
common global dependency patterns can be well explained by
a single cross interaction, Theorem 4.4 applies and the Max
BET has good performance in terms of power as shown in
Figure 4.

The local dependency in the last scenario is also well cap-
tured by the positive region of ̂̇A2

̂̇B2, particularly in the four
upper right cells. However, outside this region the variables
are independent, so the interpretation of dependency is rather
explained by a local and conditional cross interaction ̂̇A2

̂̇B2

given {̂̇A1 = 1,̂̇B1 = 1}, than by the global cross interaction̂̇A2
̂̇B2. In this case, scanning based binning methods such as FES

provide better interpretation of the local dependency.

7. Are Stars Randomly Distributed in the Sky?

In this section, we study the curious question of whether stars
in the night sky are randomly distributed. Despite a simple
statement of this long standing question, we are not aware of
any complete scientific theory that explains the phenomenon
with a confirming or disconfirming answer. In what follows, we
provide some statistical analysis of this problem.

To study this question, we collected the galactic coordinates
of the 256 brightest stars in the night sky (Perryman et al. 1997).
The galactic coordinates are essentially spherical coordinates
with the Sun as the center. These coordinates consist of radius,
longitude φ ∈ [0, 2π), and latitude ϕ ∈ (−π/2, π/2]. We ignore
the radius information and focus on the unit sphere. Since
the density of the uniform distribution over the unit sphere is
proportional to cos ϕdφdϕ, as long as X = φ and Y = sin ϕ of
the stars are independent, the stars are uniformly distributed in
the night sky.

We first consider some classical tests of independence. The
sample correlation between X and Y is −0.07 with a p-value of
0.264, which is not significant. The distance correlation between
X and Y is 0.137 with a p-value of 0.064. Hoeffding’s D test
returns with a p-value of 0.103. These p-values indicate some
evidence against independence. The KNN-MI test provides a p-
value of 0.02, which is strong evidence against independence.
However, this p-value does not provide any information about
the relationship between X and Y , and the dependence pattern
is still unclear even when we rejected the null.

We now consider applying the two-stage empirical Max BET
with dmax = 4 on these data. The BET returns the strongest
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Figure 4. Comparison of powers from six nonparametric tests of independence: the two-stage Max BET with empirical CDF and with dmax = 4 (BET), χ2 test for the
discretization when d1 = d2 = 4 (Chisq), distance correlation (dCor), Hoeffding’s D (HD), k-nearest neighbor mutual information (KNN-MI), and Fisher exact scanning
(FES).
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(Û , V̂) : Parabolic

Û
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(Û , V̂) : A⋅̂ 1A
⋅̂

2B
⋅̂

1B
⋅̂

2

Û
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Figure 5. The BET interpretations of dependency patterns. The observations are generated as in Table 1 with noise level l = 2. The first row shows the scatterplots of original
data (X , Y). The second row shows the corresponding empirical copula (̂U, V̂) for i = 1, . . . , 128. The third row shows the cross interaction of the strongest asymmetry,
which the BET returns with the rejection of independence null.

asymmetry ̂̇A1
̂̇A2

̂̇B1, where 156 stars are in the positive region
and 100 are in the negative region. Thus, Ŝ(111) = 56 and the
approximate z-statistics is 3.5 with the overall p-value 0.019.
Besides the strong evidence against independence, one impor-
tant advantage of the BET is that we can also visualize the
dependency upon rejection. In part (c) of Figure 6, we transform
the interaction in part (b) back to the original scale. Note that
the labeled stars are well-known to be along the Milky Way in
the night sky. Indeed, the Milky Way in the night sky is where
stars in the galaxy cluster together, and its shape is captured by
the positive region of Ȧ1Ȧ2Ḃ1. This fact explains the dependency
in this data and the significance of the BET.

We note here that the application of FES to the star data
returns with a p-value of 0.032 with the strongest local depen-
dency in ̂̇A2

̂̇B1 given {̂̇A1 = 1}. Compared with the BET which
uses all 256 observations to detect the dependency in ̂̇A1

̂̇A2
̂̇B1,

the p-value of FES is higher because it only uses 128 observations
in the detection of local dependency when {̂̇A1 = 1}. In terms of
interpretation, the FES only explains the dependency in the data
with the “right arm” of the milky way, whereas the BET captures
the entire milky way with an global cross interaction ̂̇A1

̂̇A2̂̇B1.
A caveat here is that we regard the above analysis more as an

illustration of the BET method rather than a scientific discovery,
which requires a much more careful study. For example, the only
strong assumption in the BET approach is the iid assumption
on the observations. This assumption might be violated when
the data points are stars. Moreover, we also note that the radius,
which is excluded from this study, plays an important role in
the location of stars. However, the interpretations from the BET
can still be of immediate practical value: For example, it can help
people find bright stars in the night sky.

8. Exploratory Data Analysis of TCGA Data

8.1. Nonlinearity and Mixture of Subtype Distributions

Conventional exploratory data analysis (EDA) of small mul-
tivariate datasets usually starts with a scatterplot matrix, see
Buja and Tukey (1992) and Cleveland (1993) for good reviews.
Pairwise scatterplots can help people find interesting depen-
dency patterns among variables, which can in turn suggest
further statistical or scientific investigation. However, for high-
dimensional data, the scatterplot matrix is not feasible since
there are too many pairwise plots to inspect (Sun and Zhao
2014). Common EDA tools in this situation such as principal
component analysis, can only show high-level structure in the
data, and focus mainly on linear relationships of variables. The
BET can provide an alternative approach for such EDA due to
the interpretability of its p-value. We illustrate this idea below in
the context of breast cancer classification.

The TCGA lobular freeze breast cancer data in Cancer
Genome Atlas Network (2012) and Ciriello et al. (2015) contain
gene expression intensities of 817 subjects, about 2/3 of which,
or 544 samples, are used here as a training set and the remaining
273 observations are used as a test set. This dataset is based on
16,615 genes. There are five subtypes groups indicated in this
dataset. In what follows, we focus on basal-like breast cancer,
which is known to be more aggressive, more difficult to treat,
and have poorer prognosis compared to the other subtypes
(Perou et al. 2000). Accurate classification of this subtype of
breast cancer is thus very important for the health quality of
patients.

The goal of this analysis is to use the BET as an EDA tool in
the training dataset in search for nonlinear dependency between
pairs of genes. Once a pair is identified in the EDA phase we look
in the literature for mentions of the two corresponding genes
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(b) Empirical Max BET: W=156, B=100, Z−Stat=3.5
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Figure 6. (a) The longitude and sine latitude of the 256 brightest stars in the night sky. (b) The strongest asymmetry for the BET at d = 2 is found to be the interaction̂̇A1̂Ḃ1
̂̇A2. (c) The strongest asymmetry in the original scale and some famous stars along the Milky Way.

and study their connection to subgroup typing. We also use the
test dataset for confirmatory analysis.

Why can nonlinear dependency be related to studies on sub-
group typing? As we illustrate below, one source of nonlinearity
could be mixture of different subtype distributions. Intuitively,
some genes might have different joint behavior under different
subtypes of cancer. Such distributional differences could be in
location, scale, covariance, and other moments. When these
different bivariate distributions are mixed together, some non-
linear dependency pattern could be created in the pooled joint
distribution. Since the BET can capture nonlinear dependency
patterns and indicate the form of nonlinearity, once a pair is
identified by the BET, we hope to track back with the label
information to find interesting pairs of genes that are related to
different subtypes of breast cancer.

We first prepare the data by excluding genes which had
nonunique entries in intensities. Such ties are results of the
thresholding step in the preprocessing, and we exclude these
genes here for simplicity. This filtering step results in 10,107
genes in the remaining data. In the EDA phase with the training
dataset, we scan over all pairs of these 10,107 genes with the BET
based on the empirical CDF transformation and depths d1 =
d2 = 2, and the p-value are calculated based on the large sample
normal approximation of hypergeometric distribution in Kou
and Ying (1996). This approach leads to a total of

(10,107
2

) =
51,070,671 ≈ 5 × 107 comparisons. We control the multiplicity
over these comparisons through the Bonferroni method. We
use the level 0.1 threshold for multiplicity adjusted p-values to
determine whether a pairing is interesting enough to follow up
in the literature.

We emphasize here that many existing nonparametric
dependence detection methods, such as Hoeffding’s D, distance
correlation, KNN-MI, and FES, are not suitable for this EDA
task for the following reasons:

(a) Classical methods such as Hoeffding’s D, distance corre-
lation, and KNN-MI do not provide clear interpretation upon
rejection of independence. For example, even if the tests based
on them are significant, they cannot distinguish pairs of genes
with nonlinear dependency from pairs of genes with linear
dependency.

(b) Although mutual information based methods such as
KNN-MI have good power against mixtures of distributions,
the p-value of KNN-MI is obtained through permutations. With
the Bonferroni control over 5 × 107 pairwise tests, we need
at least 5 × 108 random permutations for each test to have
a valid significance level of 0.1. The computational expense is
prohibitive.

(c) Although FES provides interpretation of local depen-
dency, it does not allow users to specify a global form of depen-
dency in search of interesting relationships between variables.
Thus, it cannot identify pairs of genes with global nonlinear
dependency. See the discussions below.

8.2. Results From TCGA Data

In the EDA phase, the BET rejects independence over more than
10,000 pairings of genes out of 5 × 107. Out of these pairs of
genes, we can focus on some particular form of dependency.
For example, we can restrict on pairs of genes whose depen-
dency can be explained by the cross interaction ̂̇A1

̂̇A2
̂̇B1

̂̇B2. This
consideration results in only 84 pairs of genes. Note that this
specification process of global dependency is not possible with
FES, nor other existing methods. Of those 84 pairs of ̂̇A1

̂̇A2
̂̇B1

̂̇B2
dependency, we focus on DZIP1 and NAV3. For this pair of
genes, there are 348 observations and 196 observations falling
into the positive and negative regions of ̂̇A1

̂̇A2
̂̇B1

̂̇B2, respectively.
See Figure 7(a). The symmetry statistic is Ŝ(1111) = 152, and
the z-statistic of the difference is 6.52, making the p-value of
the BET to be 6.5 × 10−10. After multiplying 5 × 107 for the
Bonferroni control, the overall adjusted p-value is 0.033, which
is strong evidence against the independence null. Furthermore,
from the interaction ̂̇A1

̂̇A2
̂̇B1

̂̇B2 we could see interesting depen-
dency patterns: in part of the data there exists strong monotone
increasing dependency, while there is a cluster of observations
above the third quartile of U and below the first quartile of V .
These patterns make the overall dependency nonlinear, which
is captured by ̂̇A1

̂̇A2
̂̇B1

̂̇B2.
The above EDA with the BET suggests an interesting ques-

tion: What is the reason of this nonlinear dependency? By
adding the label of basal-like breast cancer, the cluster of obser-
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(a) Empirical Max BET: W=348, B=196. Z−Stat=6.52
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(b) Same Data with Cancer Subtype Labels
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Figure 7. (a) The BET with d = 2 for two genes in the TCGA data. There are 348 observations and 196 observations in the empirical copula distribution falling into the
positive and negative regions of ̂̇A1

̂̇A2̂Ḃ1̂Ḃ2, respectively. The z-statistic of the difference is 6.52. (b) The same two genes with the labels shown. Basal-like breast cancer
patients are marked with a red triangle. (c) The scatterplot of same gene expressions in the original scale.

vations in the lower right white box can be explained as a result
of the joint distribution of the two genes under this subtype.
From Figure 7(b), we see clearly that basal-like breast cancer
patients tend to have higher DZIP1 intensity and lower NAV3
intensity. We also make the scatterplot of the same two genes in
the original scale in Figure 7(c), and we see that the bivariate
distribution of DZIP1 and NAV3 under the basal-like subtype
has different location and scale and is almost disjoint from the
rest of the data. This fact explains the reason of nonlinearity in
the pooled distribution: when the bivariate distribution of this
subtype is mixed together with those of other subtypes, some
nonlinearity pattern is created. With the identification of this
nonlinearity from the BET and with the label information, we
can retrospectively extract such mixtures of different subtype
distributions.

By searching the medical literature, we find both genes have
been individually investigated and are confirmed to be highly
related to basal-like breast cancer. For examples, the relationship
between DZIP1 and basal-like cancer is studied by Kikuyama
et al. (2012) and ShigunovShigunov et al. (2014), and similar
studies forNAV3 are done in Maliniemi et al. (2011) and Cohen-
Dvashi et al. (2015). However, we are not able to find results on
the joint behavior of these two genes. The BET result indicates
that this joint behavior could be scientifically important, as these
two genes behave dramatically different under the basal-like
subtype. This further suggests the possible existence of some
biological functional relationships between these two genes and
this subtype of cancer. This could be an interesting issue to
investigate.

8.3. Improvements in Classification

Statistically, the above EDA with the BET suggests that DZIP1
and NAV3 could jointly be good predictors of basal-like breast
cancer. We validate this conjecture with the test dataset of 273
subjects. We use the k-nearest neighbor classification method
with k = 1. The classification accuracy in the test dataset is 91%.
We assess this performance with cross-validation and observe
similar results. Note that if we were to use DZIP1 or NAV3
alone for the classification task, the accuracy was 79% and 76%,

respectively, that is, each of them is a good predictor but far from
perfect. However, by combining these two genes and using the
joint distribution for classification, we substantially improve the
classification accuracy.

Existing classification studies are usually based on a selected
set of many variables. One drawback of such studies is lack
of interpretability. With some black box selection procedure
over many variables, the effect of each variable is hard to sci-
entifically interpret. On the other hand, the BET analysis can
help identify pairs of variables which have high potential joint
classification power, and explanations of the effects of variables
can be obtained from the pattern of the nonlinear dependency.
Therefore, the BET can be a useful EDA tool in practice: It
provides p-values that we can see.

9. Summary and Discussions

Nonparametric dependence detection is an important problem
in statistics. To avoid the power loss due to nonuniform
consistency, we introduce the concept of BEStat, which
combines four classical statistical wisdoms: copula, filtration,
orthogonal design, and multiple testing. The proposed BET
framework combines the strength from these wisdoms and
enjoys the invariance property from the copula distribution,
universality, identifiability and uniformity from the filtration,
orthogonality and symmetry from the orthogonal design,
and interpretability from multiple testing. The binary expan-
sion approach also facilitates efficient bitwise computing
implementation.

Two important potential generalizations are nonparametric
tests of independence for general categorical variables and for
random vectors. For general contingency tables, the filtration
and the separation of marginal and joint information need to
be developed carefully. For random vectors, the binary expan-
sion filtration approximation in (3.1) , the BID equation in
Theorem 3.4 and the IOR reparametrization can all be gen-
eralized. We welcome further thoughts on related topics for
deeper understanding of dependence and useful procedures in
practice.



1636 K. ZHANG

Supplementary Materials

Online supplementary materials for this article include additional numer-
ical studies, proofs of the results, and R functions used in the numerical
studies.
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