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The behavior of one-dimensional quantum random walks is strikingly different from that of classical ones.
However, when decoherence is involved, the limiting distributions take on many classical features over time.
In this paper, we study the decoherence on both position and “coin” spaces of the particle. We propose an
analytical approach to investigate these phenomena and obtain the generating functions which encode all the
features of these walks. Specifically, from these generating functions, we find exact analytic expressions of
several moments for the time and noise dependence of position. Moreover, the limiting position distributions of
decoherent quantum random walks are shown to be Gaussian in an analytical manner. These results explicitly
describe the relationship between the system and the level of decoherence.
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I. INTRODUCTION

Quantum random walks have recently gained great inter-
est from physicists, computer scientists, and mathematicians.
The interest was sparked by their important roles in devel-
oping highly efficient quantum algorithms. For instance,
Grover’s search algorithm �1� has time cost O��N�, in con-
trast to the ordinary search algorithm which has a cost of
O�N�. This quantum search algorithm was proved to be
closely related to the behavior of quantum random walks in
�2,3�. As another example, Shor’s algorithm also improved
the speed of factorization dramatically �4�. The high effi-
ciency of quantum algorithms is discussed in �5–7�. Experi-
mental implementations of the algorithms are discussed in
�8,9�.

Besides their important applications, quantum random
walks are very attractive due to their dramatic nonclassical
behavior. After quantum random walks were defined in �10�,
many articles �11–15� studying the distribution of quantum
random walks were presented. It is known that the observed
nonclassical behavior is due to quantum coherence �16�. One
of the most shocking differences �11� is that as time t grows,
the variances of quantum random walks are O�t2� while the
variances of classical random walks are O�t�. Various
limit theorems of quantum random walks are established
�12,13,17,18�. An excellent reference can be found in �19�.

One of the most important issues surrounding the use of
quantum random walks is that they are very sensitive to in-
evitable decoherence, which could be caused by many rea-
sons, such as interactions with the environment and system
imperfections �20–22�. The effect of decoherence is very im-
portant for the application of quantum algorithms, as dis-
cussed in �23,24�. For the one-dimensional case, in the
model in �20�, decoherence is introduced by measurements
on the particle’s chirality. Long-term first and second mo-
ments of the walk were obtained and numerical results
showed that the distributions look like classical normal dis-
tributions. Similar results are found in other models
�16,23,25–29�. In particular, all of the above papers men-

tioned the fact that the variance of the simulated position
distribution grows linearly in time for large t when the quan-
tum random walk is subject to decoherence.

These results stimulated us to prove that the position dis-
tribution of a one-dimensional decoherent quantum random
walk normalized by �t, P� x

�t
, t�, converges to a normal dis-

tribution. Our work focuses on the one-dimensional discrete-
time Hadamard walk with measurements taken on both
position and chirality at each time step. This kind of deco-
herence is studied numerically in �8,23,25,26� but we will
study it fully analytically.

We shall see that when the particle is not measured, then
the system evolution is purely quantum and P� x

�t
, t� does not

converge. However, when the particle is measured subject to
a small probability, P� x

�t
, t� will converge to normal. In the

limit, when the particle is measured at each step, then the
system becomes purely classical and the normalized position
distribution is asymptotically standard normal.

In the next section, we introduce the mathematical setup
of decoherent quantum random walks. We then provide our
methodology of generating functions and the decoherence
equation. We next list our results and discuss the interesting
phenomena that occur when p is small. Finally, we summa-
rize and discuss our work. Mathematical proofs are given in
the Appendixes.

II. DECOHERENT QUANTUM RANDOM WALKS

A. Pure quantum random walk system

We start with a brief description of the one-dimensional
pure quantum random walk system. In the classical random
walks, the particle moves to the right-hand or left-hand sides
depending on the result of a coin toss. However, in the quan-
tum random walks, the particle has its chirality �right, left� as
another degree of freedom. At each step, a unitary transfor-
mation is applied to the chirality state of the particle and the
particle moves according to its new chirality state.

We denote the position space of the particle by Hp, the
complex Hilbert space spanned by the orthonormal basis
��x	 ,x�Z�, where Z is the set of integers. We also denote the
coin space by Hc as the complex Hilbert space spanned by
the orthonormal basis ��l	 , l=1,2� where 1 stands for “mov-
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ing right” and 2 stands for “moving left.” The state space H
of the particle is defined as

H = Hp � Hc. �1�

A vector ��	�H with L2-norm 1 is called a state and tells us
the distribution of the particle’s position and chirality upon
measurements. The basis of H are denoted by ��x , l	= �x	
� �l	 :x�Z� , �l=1,2�. Now we introduce the evolution opera-
tor which drives the particle. The shift operator S :H→H is
defined by

S�x	�l	 = 
�x + 1	�1	 , l = 1,

�x − 1	�2	 , l = 2.
� �2�

The coin operator C :Hc→Hc can be any unitary operator
and is an analog to the coin flip in the classical walk. The
evolution operator U :H→H is defined by

U = S�Ip � C� , �3�

where Ip is the identity in the position space.
Now let ��0	�H be the initial state and let ��t	=Ut��0	.

The sequence ���t	�0
� is called a one-dimensional quantum

random walk.
The most famous and best-studied example of quantum

random walks is the Hadamard walk, in which the coin op-
erator is the 2�2 Hadamard matrix

H2 =
1
�2

�1 1

1 − 1

 . �4�

The quantum random walk associated with H2 is called a
one-dimensional Hadamard walk.

The probability of a particle at state ��	 to be found at
state ��	 is defined by the norm squared of the inner product
of ��	 and ��	, ��� ��	�2.

In particular, the probability of the quantum random walk,
starting from the position x=0, with the coin in state m, to be
found at x with coin state n is

Wm,n�x,t� = ��x,n�Ut�0,m	�2. �5�

B. Decoherence

We focus on decoherence caused by measurements on
both position and coin of the particle. A set of operators
�Ai , i�A� is called a measurement if

�
i�A

Ai
�Ai = I , �6�

where A is some index set and A� is the adjoint operator of
A, i.e., the complex conjugate of transposed matrix of A.

In this work, we consider the measurements in a similar
manner as in �20�. Let p be a real number in �0,1�, to denote
the probability of the random walk being measured at each
step. We define Ac :H→H, such that Ac=�1− pI. Hence, the
application of Ac represents the case of no measurement be-
ing made on the particle. We also let Ax,n :H→H, so that
Ax,n=�p�x ,n	�x ,n� is the decoherence projection to the sub-
space spanned by �x ,n	. Under this setup, the index set A is

A= �c�� ��x ,n� :x�Z ,n=1,2�. Hence, by summing over the
index set A, we either apply the projective measurement op-
erators Ax,n with probability p or the identity operator Ac
with probability 1− p.

Let ��	 be a state in H. Then the position distribution of
the decoherent quantum random walk starting from ��	, at
time t is

P��x,t� = �
n

�
jn�A

¯ �
j1�A

��x,n��Ajt
U� ¯ �Aj1

U���	�2. �7�

In other words, the walk starts at ��	, then we apply
the evolution operator U and try to measure it. The process
repeats until the tth step is finished. We then
consider the position distribution of the particle. We
call each �j1 , j2 , . . . , jt , �x ,n�� a path. We also call
�x ,n��Ajt

U��Ajt−1
U�¯ �Aj1

U���	 an amplitude function of the
particle associated with the path. Many paths yield 0 ampli-
tude due to the decoherence projections, the Axj’s. However,
the summation in Eq. �7� over all paths �j1 , j2 , . . . , jt , �x ,n��
gives the probability of observing the particle at position
state �x	 at time t.

At each step of a path, the walk is either not measured
with probability q=1− p or is measured at �x ,n	 with prob-
ability p. So when p=0, the walk is not measured and the
system is the same as the pure quantum random walk previ-
ously defined. When p=1, the particle is interfered with at
each step, hence the quantum behavior essentially disappears
and the system is exactly classical.

We work on the decoherent Hadamard walk starting from
position 0. We use

Pt���	, ��	� = �
jt�A

. . . �
j1�A

�����Ajt
U� . . . �Aj1

U���	�2 �8�

to denote the probability, at time t, of a particle in the deco-
herent quantum random walk starting from ��	 to be found at
state ��	. In particular, we denote the probability that at time
t, the particle starting at �0,m	 can be found at �x ,n	 by

Pm,n�x,t� = �
j1,. . .,jt�A

��x,n��Ajt
U� ¯ �Aj1

U��0,m	�2. �9�

Since we are interested in the limiting distribution of the
walk, we focus on the Fourier transform of the above prob-
abilities,

P̂m,n�k,t� = �
x

Pm,n�x,t�eikx. �10�

We consider two types of walks. We first consider the walk
starting at the state ��0	= 1

�2
�0,1	+ i 1

�2 �0,2	. We call this walk
“symmetric” and denote its probability distribution by
P�x , t�. Note that the characteristic function of the symmetric
walk is

P̂�k,t� =
1

2�
m

�
n

P̂m,n�k,t� . �11�

From the above equation, we can see that its characteristic
function is obtained by taking the average of those with ini-
tial chirality state m. Furthermore, in �11�, it is shown that
the pure quantum random walk starting with ��0	 has a sym-

KAI ZHANG PHYSICAL REVIEW A 77, 062302 �2008�

062302-2



metric position distribution. These are the reasons why we
call it “symmetric.”

We also consider the walk that starts at �0,1	, i.e., the
walk starting at 0 with chirality “right” and denote its prob-

ability distribution by P̃�x , t�. In this case, the characteristic
function of this walk is

P̂̃�k,t� = �
n

P̂1,n�k,t� . �12�

Our goals are to show that as t→�,

P̂� k
�t

,t
 → e−�1/2�vk2
, �13�

for some positive number v in the symmetric walk case, as
well as to show that as t→�,

P̂̃� k
�t

,t
 → e−�1/2�vk2
, �14�

in this specific initial state case.

III. GENERATING FUNCTIONS AND THE
DECOHERENCE EQUATION

A. Generating functions

The direct calculation involves some formidable, very
complicated combinatorics. Therefore, we introduce the idea
of generating functions. The generating function of the deco-
herent quantum random walk is

Pm,n�x,z� = �
t=0

�

Pm,n�x,t�zt. �15�

The Fourier transform of the generating function is

P̂m,n�k,z� = �
x

Pm,n�x,z�eikx. �16�

Note that for z in the unit disk �z : �z��1�, since �P̂m,n�k , t��
�1 and �Pm,n�x , t���1 for every t, the �t=0

� P̂m,n�k , t�zt and
Pm,n�x ,z� are analytic. Furthermore,

�
x

�
t=0

�

�Pm,n�x,t�eikxzt�2 � � . �17�

Hence, by Fubini’s theorem, we have

P̂m,n�k,z� = �
t=0

�

P̂m,n�k,t�zt, �18�

i.e., P̂m,n�k ,z� is analytic and P̂m,n�k , t� is the coefficient of zt

in the expansions of P̂m,n�k ,z�. Therefore, instead of finding

P̂m,n�k , t� directly, we first find the explicit formulas of

P̂m,n�k ,z� and then we apply Cauchy’s theorem

P̂m,n�k,t� =
1

2�i
�

�z�=r

P̂m,n�k,z�
zt+1 dz , �19�

for some 0�r�1, to obtain P̂m,n�k , t�.

B. Decoherence equation

The functions Q̂m,n�k ,z� and Qm,n�x ,z� are very important

in our proofs. We let Ŵm,n�k , t�=�xWm,n�x , t�eikx be the Fou-
rier transform of the pure Hadamard walk. We also let

Q̂m,n�k ,z�= p
q�t=1

� Ŵm,n�k , t��qz�t for 0� p�1 and q=1− p.

Note that �Ŵm,n�k , t���1. Hence, for z� �z : �z�� 1
q �,

�Q̂m,n�k ,z����. Therefore, Q̂m,n�k ,z� is analytic in �z : �z�
�

1
q �. Furthermore, let Qm,n�x ,z�= p

q�t=1
� Wm,n�x , t��qz�t, and

by Fubini’s theorem again we have

Q̂m,n�k,z� =
p

q
�
t=1

�

Ŵm,n�k,t��qz�t = �
x

Qm,n�x,z�eikx. �20�

Using the above notations, we derive the following theorem,
whose proof can be found in the appendixes and in �30�.

Theorem III.1 (decoherence equation). The functions

P̂m,n�k ,z� are analytic in �z : �z��1� and are meromorphic in
�z : �z�� 1

q �. Furthermore, if we denote the matrices of

�P̂m,n�k ,z�� and �Q̂m,n�k ,z�� by P and Q, respectively, then

P = −
q

p
I +

1

p
�I − Q�−1. �21�

This equation establishes the relationship between the deco-
herent quantum random walk �left-hand side� and the pure
quantum random walk �right-hand side�. By working on the
Fourier transform of the pure quantum random walk, we ob-

tain the formulas of P̂m,n�k ,z� from this equation.

IV. MAIN RESULTS

We list our results for the two types of decoherent quan-
tum random walks here. The step-by-step mathematical
proofs of theorems in this section can be found in �30�.

A. Results for the symmetric decoherent
quantum random walk

The following theorem gives the closed form formula of
the Fourier transform of the generating function of the walk.
This formula synthesizes all the information of the walk and
is crucial in proving our results.

Theorem IV.1. The Fourier transform of the generating
function of the symmetric decoherent Hadamard walk,

P̂�k ,z�, is given by
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P̂�k,z� =
q�q − cos2 k�z2 + p cos kz + �1 − z cos k�E

pq cos kz3 − �pq + p�z2 + p cos kz + �z2 − 2 cos kz + 1�E
, �22�

where

​E = ��q2z2 − �1 + cos k�qz + 1��q2z2 + �1 + cos k�qz + 1�
�23�

and the square root in the formula of E is defined through the
principal logarithm.

We first show that the position distribution of the walk is
symmetric with respect to the origin.

Theorem IV.2. Let 	t be the expected position of the sym-
metric decoherent Hadamard walk on the line with 0� p
�1 and q=1− p. Then 	t=0, ∀ t.

We then consider the limiting distribution. We derive the
following theorem for the limiting distribution of the sym-
metric decoherent Hadamard walk.

Theorem IV.3. For the symmetric decoherent Hadamard
walk on the line with 0� p�1 and q=1− p, the characteris-

tic function P̂�k , t� satisfies

P̂� k
�t

,t
 = exp�−
p + 2�1 + q2 − 2

2p
k2
 + O�t−1� �24�

as t→�, i.e.,

P� x
�t

,t
 → N�0,
p + 2�1 + q2 − 2

p

 �25�

in distribution as t→�.
This theorem states that after a long time, the position

distribution of the particle is Gaussian. We see from the vari-
ance of the distribution that it is a mixture of the quantum
and classical limiting distribution.

We give a plot of comparison for theoretical limiting dis-
tributions and simulated distributions with respect to differ-
ent p’s in Fig. 1. The probabilities in the theoretical distribu-
tions are obtained by integrating the densities from Eq. �25�
over each interval of length 2

�500
.

We see that the numerical results compare very well with
theoretical limits obtained in Theorem 3, except for p=0.01.
This is because when p=0.01, t=500 is not large enough for
the entire distribution to converge. However, even in this
case, we can still see that a classical central peak of the
distribution is forming.

We also see the trend of the distributions as p varies.
When p increases to 1, the distribution is asymptotically
standard normal, as in a classical walk. On the other hand,
when p is decreasing to 0, the variance increases to infinity,
meaning that P� x

�t
, t� does not converge. In fact, in �12,13�, it

is shown that P� x
t , t� converges.

We also find the long-term variance of the symmetric
walk as follows.

Theorem IV.4. For the symmetric decoherent Hadamard
walk on the line with 0� p�1 and q=1− p, the variance
V�x , t� satisfies

V�x,t� =
p + 2�1 + q2 − 2

p
t −

2q2

p�1 + q2
−

2

p2 �1 + q2 − �1 + q2�

+ O�e−ct� , �26�

for some c
0, as t→�.
This theorem shows that for fixed p and large t, the stan-

dard deviation of the walk is growing linearly in �t. We
plotted the standard deviations obtained from Eq. �26�
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against p’s in Fig. 2. This picture compares very well with
Fig. 1 in �26�, where the values of standard deviations are
from numerical simulations. Note that when t=200 and p
=0.01, the standard deviation seems too low. This is because
when t=200, the limiting phenomenon has not occurred yet
for the walk with p=0.01. Therefore, the formula �26� is not
a good approximation and the decoherent walk still re-
sembles the pure quantum random walk. We discuss this in
Sec. V.

B. Results for the decoherent Hadamard walk starting at �0,1‹

Now we consider the decoherent walk starting at �0,1	.
As before we first find the expected position of the walker at
time t.

Theorem IV.5. For the decoherent Hadamard walk starting
at �0,1	 with 0� p�1 and q=1− p, if we let 	̃t be the

expected position at time t, then we have 	̃t=
�1+q2−1

p
+O�e−dt� for some d
0, as t→�.

This theorem shows that the limiting expected position of
the decoherent Hadamard walk is to the right-hand side of
the origin, if the initial coin state is “right.” We see that when
p→0, 	̃t→�. This finding is consistent with the result in
�11� that the pure quantum random walk starting with chiral-
ity “right” drifts to the right-hand side.

For the second moment, we have the same result as for
the symmetric walk.

Theorem IV.6. For the decoherent Hadamard walk starting

at �0,1	 with 0� p�1 and q=1− p, the variance Ṽ�x , t�,

Ṽ�x,t� =
p + 2�1 + q2 − 2

p
t −

2q2

p�1 + q2
−

2

p2 �1 + q2 − �1 + q2�

+ O�e−ct� , �27�

for some c
0, as t→�.

Now we show that the limiting position distribution of the
decoherent Hadamard walk starting at �0,1	 is also Gaussian.

Theorem IV.7. For the decoherent Hadamard walk starting
at �0,1	 with 0� p�1 and q=1− p, the characteristic func-

tion P̂̃�k , t� satisfies

P̂̃� k
�t

,t
 = exp�−
p + 2�1 + q2 − 2

2p
k2
 + O�t−1/2� �28�

as t→�, i.e.,

P̃� x − 	̃t

�t
,t
 → N�0,

p + 2�1 + q2 − 2

p

 �29�

in distribution as t→�.
Remark IV.1. Note that here the converging speed is

O�t−1/2� while we have O�t−1� for the symmetric walk. This

is because when one takes the average of the P̂m,n� k
�t

, t�, the
error terms in O�t−1/2� cancel out one another. This result
shows that the symmetric walk converges faster.

V. SPEED OF THE WALK WHEN p IS SMALL:
PSEUDOQUANTUM PHENOMENON

In �11�, it is shown that the long-term variance of the
Hadamard walk is �1− 1

�2
�t2. We proved the same result via

our approach by letting p→0.
Theorem V.1. Let Q�x , t� denote the position distribution

of the Hadamard walk on the line, the long-term variance
VQ�x , t� satisfies

VQ�x,t�
t2 → �1− 1

�2
� as t→�.

We also investigated the case when p is small. Because
current literature shows that the distribution of the pure Had-
amard walk compares well with the uniform distribution
over �− t

�2
, t

�2
�, we also compare the decoherent Hadamard

walk with it. Denote the uniform distribution over �− t
�2

, t
�2

�
by Ut. We shall compare the variance of Ut and the variance
of the symmetric walk. Note that the long-term variance of
the decoherent walk is given by Eq. �26�. Note also that the
variance of Ut is given by

Var�Ut� =
t2

6
. �30�

Hence, the difference �Var�Ut�−V�x , t�� is minimized at

t0 =
6��1 + q2 − 1�

p
+ 3. �31�

The minimizer p from Eq. �31� when t0=200 is about
0.0124. This compares well with the numerical result in �26�,
which demonstrated that when t0=200, the p that minimizes
the difference between the symmetric walk and Ut is about
0.013. A plot of t0 versus p is also given in Fig. 3.

The time t0 is interesting in the sense that the variance of
the decoherent walk could not be regarded as linear in t
before t0, i.e., the walk before t0 could not be regarded as
“classical.” We call the period from 0 to t0 “pseudoquantum”
since the walk takes on quantum features. After t0, the vari-
ance of the walk approaches the formula obtained in Eq.
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FIG. 2. �Color online� Standard deviation of the particle position
as a function of p at t=200, 300, 400, and 500. The legend refers to
curves shown from top to bottom. The grid of p is from 0 to 1 with
increment 0.01.

LIMITING DISTRIBUTION OF DECOHERENT QUANTUM … PHYSICAL REVIEW A 77, 062302 �2008�

062302-5



�26�. For example, for p=0.01, t0=247.3. Therefore, when
t=200, the limiting behavior has not occurred and the deco-
herent Hadamard walk has more quantum features than clas-
sical ones. This explains why in Fig. 2, the standard devia-
tion obtained from Eq. �26� is not accurate when p=0.01 and
t=200.

VI. CONCLUSIONS

We have investigated the quantum walk with decoherence
on both position and chirality states. Long-term limits are
obtained for both the symmetric walk and the walk starting
at 0 with chirality “right.” We provide analytical explana-
tions of the dynamics of the decoherent quantum walk sys-
tem and we see that the system is indeed a mixture of quan-
tum and classical ones. The limiting distributions of quantum
random walks are shown to be Gaussian if decoherence oc-
curs. These results are very important properties of the deco-
herent quantum random walks and could be essential for the
development of quantum algorithms and experiments.

We also see that when p is small, the system remains
nonclassical for a very long time. If a quantum algorithm can
be finished before the classical features appear, then we may
call it a “pseudoquantum” algorithm. However, we do not
know how fast the “pseudoquantum” algorithms are as com-
pared to the classical ones. Therefore, we suggest future
studies on these areas.

ACKNOWLEDGMENTS

K.Z. is grateful to Professor Wei-Shih Yang for his en-
couragement, sound advice, and great ideas. In particular, the
idea of the decoherence equation is suggested by Professor
Yang. The author appreciates Professor Shiferaw Berhanu,
Professor Janos Galambos, Professor Seymour Lipschutz,
and Professor Yuan Shi for their insightful advice. K.Z.
would also like to thank Professor Boris Datskovsky, Profes-

sor Gonzalo Abal, Professor Andris Ambainis, Professor
Todd Brun, Professor Raul Donangelo, and Professor Viv
Kendon for helpful communications. Finally, the author
thanks the referee for his/her valuable suggestions.

APPENDIX A: PROOF OF THEOREM III.1

We start with an observation about the decoherent quan-
tum random walk and obtain a recursive formula. Then we

apply that formula to the P̂m,n�k ,z� to establish the decoher-
ence equation.

For any state ��	�H, ��	 can be written as ��	
=�y,l�y , l ��	�y , l	. By definition,

Pt+1��0,m	, ��	� = qPt��0,m	,U���	�

+ p�
y,l

��y,l��	�2Pt��0,m	,U��y,l	� .

�A1�

In particular, for ��	= �x ,n	, we have

Pt+1��0,m	, ��x,n	� = Pt��0,m	,U��x,n	� , �A2�

which in turn gives

Pt+1��0,m	, ��	� = qPt��0,m	,U���	�

+ p�
y,l

��y,l��	�2Pt+1��0,m	, �y,l	� .

�A3�

This is our recursive formula. Also, for t=1, we have

P1��0,m	, ��	� = q����U�0,m	�2

+ p�
y,l

��y,l��	�2P1��0,m	,U��y,l	� ,

�A4�

and

P1��0,m	, �x,n	� = ��x,n�U�0,m	�2. �A5�

By applying the recursive formulas �A3� and �A4� repeat-
edly, we have the following equation:

Pm,n�x,t� = Pt��0,m	, �x,n	�

= �
s=1

t−1

pqs−1�
y,l

��y,l��U��s�x,n	�2Pt−s��0,m	, �y,l	�

+ qt−1��x,n�Ut�0,m	�2. �A6�

Note that by the definition of Wm,n�x , t�, we have that

��y,l��U��s�x,n	�2 = ��x,n�Us�y,l	�2 = Wl,n�x − y,s� �A7�

and that

��x,n�Ut�0,m	�2 = Wm,n�x,t� . �A8�

Therefore, Eq. �A6� becomes
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FIG. 3. �Color online� The pseudoquantum time t0 as a function
of p. The grid of p is from 0.01 to 1 with increment 0.01.
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Pm,n�x,t� = �
s=1

t−1

pqs−1�
y,l

Wl,n�x − y,s�Pm,l�y,t − s�

+ qt−1Wm,n�x,t� . �A9�

Now, by Eq. �A9�, for z� �z : �z�� 1
q �,

Pm,n�x,z� = �x,n
0,m +

1

p
Qm,n�x,z� − Qm,n�x,z�

+ �
y,l

Ql,n�x − y,z�Pm,l�y,z� , �A10�

where

��,n

,m = 
1, 
 = �, m = n ,

0, otherwise.
�

Finally, we take the Fourier transform on Eq. �A10� to
obtain

P̂m,n�k,z� = �n
m +

q

p
Q̂m,n�k,z� + �

l

P̂m,l�k,z�Q̂l,n�k,z� ,

�A11�

where

�n
m = 
1, m = n ,

0, otherwise.
�

The interchanges of summation are justified since the series

absolutely converges. Now, denoting the matrices �P̂m,n�k ,z��
and �Q̂m,n�k ,z�� by P and Q, we have the following equation:

P = I +
q

p
Q + PQ , �A12�

which is equivalent to

P�I − Q� = −
q

p
�I − Q� +

1

p
I . �A13�

We complete the proof by the following lemma.
Lemma A.1. For z� �z : �z��1�, the matrix I−Q is invert-

ible.

Proof. For z� �z : �z��1�, if we let Qm,n= Q̂m,n�k ,z�, we
have

�Qm,1� + �Qm,2� =
p

q
�
t=1

�

�Ŵm,1�k,t��qz�t� +
p

q
�
t=1

�

�Ŵm,2�k,t��qz�t�

�
p

q
�
t=1

�

qt��Ŵm,1�k,t�� + �Ŵm,2�k,t���

�
p

q
�
t=1

�

qt��Ŵm,1�0,t�� + �Ŵm,2�0,t��� �
p

q

q

p

= 1, ∀ i . �A14�

Equation �A14� implies that �Q��=maxm�n�Qm,n��1. There-
fore,

��
j=0

�

Qj�� � �
j=0

�

�Qj�� � � , �A15�

i.e., the series � j=0
� Qj converges. This implies that �I−Q�−1

exists and

�I − Q�−1 = �
j=0

�

Qj .

By Lemma 1, I−Q is invertible and together with Eq. �A13�
we have

P = −
q

p
I +

1

p
�I − Q�−1, �A16�

which is exactly Eq. �21�.
For z� �z : �z�� 1

q �, �det�I−Q����. Hence, det�I−Q� is
analytic. Note also that

P̂1,1�k,z� = −
q

p
+

1 − Q2,2

p det�I − Q�
,

P̂1,2�k,z� =
Q1,2

p det�I − Q�
,

P̂2,1�k,z� =
Q2,1

p det�I − Q�
,

P̂2,2�k,z� = −
q

p
+

1 − Q1,1

p det�I − Q�
. �A17�

Therefore, the P̂m,n�k ,z� are meromorphic functions for
z� �z : �z�� 1

q �.

APPENDIX B: PROOF OF THEOREM IV.1

To obtain formula �22�, first we need to know the formu-

las of Ŵm,n�k , t�, i.e., we look at the pure quantum walk in
the Fourier transform.

Similar to the setup in �11�, if we let the initial state be
�0,m	, and we let �m,n�x , t�= �x ,n�Ut�0,m	 be the coefficient
of the walk at time t at coordinate �x ,n	, then Wm,n�x , t�
= ��m,n�x , t��2. We also introduce �̂m,n�k , t�=�x�m,n�x , t�eikx

and �̂m�k , t�= ��̂m,1�k , t� ,�̂m,2�k , t��T in the Fourier trans-
form as in �11�. The evolution operator in Fourier transform

space, U�k�, is defined such that �̂m�k , t+1�=U�k��̂m�k , t�.
It is obtained in �11� that

U�k� =
1
�2

� eik eik

e−ik − e−ik 
 . �B1�

Therefore, if we let Ak= 1
2 + cos k

2�1+cos2 k
and Ck= e−ik

2�1+cos2 k
, then

for t=2j−1, we have

Ut�k� = �− e−i�kt + 2Ak cos �kt 2C̄k cos �kt

2Ck cos �kt ei�kt − 2Ak cos �kt

 .

�B2�

Also, for t=2j, we have
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Ut�k� = �e−i�kt + 2Aki sin �kt 2iC̄k sin �kt

2iCk sin �kt ei�kt − 2Aki sin �kt

 .

�B3�

Now, note that

�̂m,n�k,0� = �
x

�x,n�0,m	eikx = �n
m, �B4�

and that �̂m�k , t�= �U�k��t�̂m�k ,0�, we conclude that

�̂m,n�k , t�= �Ut�k��n,m.
Hence, for t=2j−1,

�̂1,1�k,t� = − e−i�kt + 2Ak cos �kt ,

�̂1,2�k,t� = 2Ck cos �kt ,

�̂2,1�k,t� = 2C̄k cos �kt ,

�̂2,2�k,t� = ei�kt − 2Ak cos �kt . �B5�

For t=2j,

�̂1,1�k,t� = e−i�kt + 2Aki sin �kt ,

�̂1,2�k,t� = 2iCk sin �kt ,

�̂2,1�k,t� = 2iC̄k sin �kt ,

�̂2,2�k,t� = ei�kt − 2Aki sin �kt . �B6�

Since Wm,n�x , t�= ��m,n�x , t��2, in the Fourier transform,

Ŵm,n�k,t� =
1

2�
�

0

2�

�̂m,n�s,t��̂m,n�k − s,t�ds . �B7�

We separate the real and imaginary parts of Ŵm,n�k , t� and get
their formulas as follows. For t=2j−1,

Re�Ŵ1,1�k,t�� = Re�Ŵ2,2�k,t��

=
1

2�
�

0

2� 1

2

cos �st cos �k−st

cos�s cos �k−s
cos s cos�k − s�ds

−
1

2�
�

0

2�

sin �st sin �k−stds , �B8�

Re�Ŵ1,2�k,t�� = Re�Ŵ2,1�k,t��

=
1

2�
�

0

2� cos k

2

cos �st cos �k−st

cos�s cos �k−s
ds ,

�B9�

Im�Ŵ1,1�k,t�� = − Im�Ŵ2,2�k,t��

=
1

2�
�

0

2� � 1
�2

cos s

cos �s
cos �st sin �k−st

+
1
�2

cos�k − s�
cos �k−s

cos �k−st sin �st
ds ,

�B10�

Im�Ŵ1,2�k,t�� = − Im�Ŵ2,1�k,t��

= −
1

2�
�

0

2� sin k

2

cos �st cos �k−st

cos �s cos �k−s
ds .

�B11�

For t=2j,

Re�Ŵ1,1�k,t��

= Re�Ŵ2,2�k,t��

= −
1

2�
�

0

2� 1

2

sin �st sin �k−st

cos �s cos �k−s
cos s cos�k − s�ds

+
1

2�
�

0

2�

cos �st cos �k−stds , �B12�

Re�Ŵ1,2�k,t�� = Re�Ŵ2,1�k,t��

= −
1

2�
�

0

2� cos k

2

sin �st sin �k−st

cos �s cos �k−s
ds ,

�B13�

Im�Ŵ1,1�k,t�� = − Im�Ŵ2,2�k,t��

=
1

2�
�

0

2� � 1
�2

cos s

cos �s
sin �st cos �k−st

+
1
�2

cos�k − s�
cos�k−s

sin �k−st cos �st
ds ,

�B14�

Im�Ŵ1,2�k,t�� = − Im�Ŵ2,1�k,t��

=
1

2�
�

0

2� sin k

2

sin �st sin �k−st

cos �s cos �k−s
ds .

�B15�

Now we are ready to find the P̂m,n�k ,z� formula. We first
introduce several short notations. We introduce the �i’s for
z� �z : �z�� 1

q �. Let

�1 = Re�Q1,1� =
p

q
�
t=1

�

�Re�Ŵ1,1�k,t����qz�t, �B16�
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�2 = Re�Q1,2� =
p

q
�
t=1

�

�Re�Ŵ2,1�k,t����qz�t, �B17�

�3 = Im�Q1,1� =
p

q
�
t=1

�

�Im�Ŵ1,1�k,t����qz�t, �B18�

�4 = Im�Q1,2� =
p

q
�
t=1

�

�Im�Ŵ2,1�k,t����qz�t. �B19�

Since �Ŵm,n�k , t���1, for z� �z : �z�� 1
q �, the above series all

converge. Therefore, �i’s are all analytic in �z : �z�� 1
q �.

Now det�I−Q� can be written as

det�I − Q� = 1 − Q1,1 − Q2,2 + Q1,1Q2,2 − Q1,2Q2,1

= �1 − �1�2 − �2
2 + �3

2 − �4
2. �B20�

Note that P̂�k ,z�= 1
2�m,nP̂m,n�k ,z�. By the decoherence Eq.

�21�, this function can be written as

P̂�k,z� = −
q

p
+

1

2p

2 − Q1,1 + Q1,2 + Q2,1 − Q2,2

det�I − Q�

= −
q

p
+

1 − �1 + �2

p��1 − �1�2 − �2
2 + �3

2 − �4
2�

. �B21�

Therefore, once we have the formula of �i’s, we have the

formula of P̂�k ,z�. To find �i’s formula, we first look for the
formula for a real number z� �− 1

q , 1
q �. Then we show that

they are the desired formulas for all z� �z : �z�� 1
q �. Let

I1 = �
j=1

�

cos��2j − 1��s�cos��2j − 1��k−s��qz�2j−1,

�B22�

I2 = �
j=1

�

sin��2j − 1��s�sin��2j − 1��k−s��qz�2j−1,

�B23�

I3 = �
j=1

�

cos��2j��s�cos��2j��k−s��qz�2j , �B24�

I4 = �
j=1

�

sin��2j��s�sin��2j��k−s��qz�2j , �B25�

I5 = �
j=1

�

cos��2j − 1��s�sin��2j − 1��k−s��qz�2j−1,

�B26�

I6 = �
j=1

�

sin��2j − 1��s�cos��2j − 1��k−s��qz�2j−1,

�B27�

I7 = �
j=1

�

sin��2j��s�cos��2j��k−s��qz�2j , �B28�

I8 = �
j=1

�

cos��2j��s�sin��2j��k−s��qz�2j . �B29�

Since the �i’s are bounded, we can interchange the integral
and the summation to write the �i’s as

�1 =
p

q

1

2�
�

0

2� �1

2

cos s cos�k − s�
cos �s cos �k−s

�I1 − I4� − I2 + I3
ds ,

�B30�

�2 =
p

q

1

2�
�

0

2� 1

2

cos k

cos �s cos �k−s
�I1 − I4�ds , �B31�

�3 =
p

q

1

2�
�

0

2� 1
�2

� cos s

cos �s
�I5 + I7� +

cos�k − s�
cos �k−s

�I6 + I8�
ds ,

�B32�

�4 =
p

q

1

2�
�

0

2� 1

2

sin k

cos �s cos �k−s
�− I1 + I4�ds . �B33�

Then, we have

I1 − I4 =
1

D
cos �s cos �k−sqz�1 − q2z2� , �B34�

− I2 + I3 =
1

D
�−

1

2
sin s sin�k − s�qz + q2z2�cos2 s + cos2�k

− s� − 1� −
3

2
sin s sin�k − s�q3z3 − q4z4
 , �B35�

I5 + I7 =
1

D

1
�2

qz cos �s�sin�k − s� + 2qz sin s

+ q2z2 sin�k − s�� , �B36�

I6 + I8 =
1

D

1
�2

qz cos �k−s�sin s + 2qz sin�k − s� + q2z2 sin s� ,

�B37�

where

D = cos�k − 2s��q3z3 − 2 cos kq2z2 + qz�

+ q4z4 − cos kq3z3 − cos kqz + 1. �B38�

Therefore,

�1 = pz
1

2�
�

0

2� 1

D
�cos�k − 2s�qz�cos k − qz�

+
1

2
cos k +

1

2
cos kq2z2 − q3z3
ds , �B39�
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�2 =
1

2
pz cos k�1 − q2z2�

1

2�
�

0

2� 1

D
ds , �B40�

�3 = pz sin k
1

2�
�

0

2� 1

D
�cos�k − 2s�qz +

1

2
+

1

2
q2z2
ds ,

�B41�

�4 =
1

2
pz sin k�1 − q2z2�

1

2�
�

0

2� 1

D
ds . �B42�

By the integral formula

� dx

b + c cos ax
=

2

a�b2 − c2
arctan��b − c

b + c
tan�1

2
ax
�

�B43�

for b
c and the fact that

q4z4 − cos kq3z3 − cos kqz + 1 
 q3z3 − 2 cos kq2z2 + qz

�B44�

for z� �− 1
q , 1

q �, we have

1

2�
�

0

2� 1

D
ds = „�1 + qz��1 − qz���q2z2 − �1 + cos k�qz + 1�

��q2z2 + �1 + cos k�qz + 1��1/2
…

−1. �B45�

Letting

E = ��q2z2 − �1 + cos k�qz + 1��q2z2 + �1 + cos k�qz + 1� ,

�B46�

we have

�1 =
pz

q2z2 − 2 cos kqz + 1
�cos k − qz

−
cos k − 2qz + cos kq2z2

2E

 ,

�2 = pz cos k
1

2E
,

�3 =
pz sin k

q2z2 − 2 cos kqz + 1
�1 −

1 − q2z2

2E

 ,

�4 = − pz sin k
1

2E
. �B47�

Now that we have obtained the formulas of �i’s for
z� � −1

q , 1
q �, we can check easily by taking the principal

branch of the logarithm, that the formulas are analytic in
�z : �z�� 1

q �. Hence, by the analytic continuation theorem, they
are the desired formulas for z� �z : �z�� 1

q �.
Finally, the theorem is obtained by applying Eq. �B47� to

Eq. �B21�.

APPENDIX C: OTHER PROOFS IN SECTION IV A

Proof of Theorem IV.2. Note that from the formula, for
some r�1, we have

	t =
1

i
�kP̂�0,t� =

1

2�i
�

�z�=r

�kP̂�0,z�
izt+1 dz = 0. �C1�

The change of the order of integration and differentiation is

justified since �kP̂�k ,z� is continuous on the contour.

Proof of Theorem IV.3. The denominator of P̂�k ,z� has
less than eight isolated roots. We shall now look for the root
with the smallest absolute value. This root has no closed
form. However, since we concentrate on the asymptotic be-
havior, we need only to know its behavior around k=0. The
properties of this root are summarized in the following
lemma.

Lemma C.1. Let D�k ,z� denote the denominator of

P̂�k ,z�. Then the root of D�k ,z�=0 in z, with z=1 when k
=0 is of the smallest absolute value in a neighborhood of k
=0. If we denote it by z�k�, then z�k� has multiplicity one and
can be written as follows:

z�k� = 1 + �kz�0�k + o�k� . �C2�

Proof. For k=0, D�0,z�= �1−z��1−qz��pz+ �1
−z��1+q2z2�. By solving this equation we can see that z=1
has the smallest absolute value. The root of the second small-
est absolute value has a closed form expression, which can
be found in the Appendix of �30�. We denote this root by
z̃�p�. An expansion of the root around p=0 is

z̃�p� = 1 +
�2

2
p +

1

2�1

2
+

1
�2


p2 + o�p2� . �C3�

Now, by continuity of k, z�k� has the smallest absolute value
in a neighborhood of k=0.

Since ��zD�k ,z��k=0,z=1�0, z�k� has multiplicity one. We
then apply the implicit function theorem to find its deriva-
tives.

Remark C.1. For p→1, D�0,z�→1−z, for all z� �z : �z�
�

1
q �, which implies that other roots go to infinity. In the

limit, when p=1, there is only a single root.
Now we utilize the implicit function theorem to find

�kz�0� and �k
2z�0� where z�k� is defined implicitly by

D�k ,z��0.
Taking the first derivative we obtain

0 = �kD�k,z� = − pq sin kz3 + pq cos k3z2�kz − �pq + p�2z�kz

− p sin kz + p cos k�kz + E�2z�kz + 2 sin kz − 2 cos k�kz�

+ �kE�z2 − 2 cos kz + 1� . �C4�

For k=0 and z=1, the equation becomes

�pq − p��kz = 0, �C5�

which implies that

�kz�0� = 0. �C6�

Now, for �k
2z�0�, we can take the second derivative on D�k ,z�

to obtain
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0 = �k
2D�k,z� = − pq cos kz3 − 2pq sin k3z2�kz

+ pq cos k�3z2�k
2z + 6z��kz�2� − �pq + p��2z�k

2z + 2��kz�2�

− p cos kz − 2p sin k�kz + p cos k�k
2z + E�2z�k

2z

+ 2 cos kz − 2 cos k�k
2� + 2�kE�2z�kz + 2 sin k�kz

− 2 cos k�kz��k
2E�z2 − 2 cos kz + 1� , �C7�

which in turn gives

�k
2z�0� =

p + 2�1 + q2 − 2

p
. �C8�

Similarly, taking the third derivative of D�k ,z�=0 gives

�k
3z�0� = 0. �C9�

Also, by taking the fourth derivative we obtain

�k
4z�0� =

1

p3�1 + q2�1/2 �76q4 − 83q3�1 + q2�1/2 + 16q3

+ 68q2 − q2�1 + q2�1/2 − 37q�1 + q2�1/2

+ 16q − 23�1 + q2�1/2 + 28� . �C10�

Hence we have the expansion of z�k� at k=0,

z�k� = 1 +
p + 2�1 + q2 − 2

2p
k2 + O�k4� . �C11�

The residue of P̂�k,z�
zt+1 is

Res� P̂�k,z�
zt+1 ,z�k�
 = � 1

z�k�

t+1

lim
z→z�k�

�z − z�k��P̂�k,z� .

�C12�

We now prove another lemma.
Lemma C.2. We have

lim
z→z�k�

�z�k� − z�P̂�k,z� = 1 + O�k2� �C13�

as k→0.
Proof. Note that ∀ z�1,

lim
k→0

�z�k� − z�P̂�k,z� = 1, �C14�

i.e., ∀ �
0, ∃�, so that,

��z�k� − z�P̂�k,z� − 1� � � �C15�

for �k���. Equation �C15� implies that

lim
z→z�k�

��z�k� − z�P̂�k,z� − 1� � � �C16�

for �k���. Hence,

� lim
z→z�k�

�z�k� − z�P̂�k,z� − 1� � � �C17�

for �k���, i.e.,

lim
k→0

lim
z→z�k�

�z�k� − z�P̂�k,z� = 1. �C18�

Now, for a small r1
0, such that z�k� is the only pole inside
the circle �z−1�=r1, we have

lim
k→0

lim
z→z�k�

1

k
��z�k� − z�P̂�k,z� − 1�

= lim
k→0

1

k� 1

2�i
�

�z−1�=r1

P̂�k,z�dz − 1

=

1

2�i
�

�z−1�=r1

�kP̂�0,z�dz = 0. �C19�

Similarly, we also have

lim
k→0

lim
z→z�k�

1

k2 ��z�k� − z�P̂�k,z� − 1�

=
1

2�i
�

�z−1�=r1

�k
2P̂�0,z�dz

= Res� z

�1 − z�2 +
2z2�− 1 + �1 + q2z2�

�1 − z�2�pz + �1 − z��1 + q2z2�
,1


=
p + 2�1 + q2 − 2

p
−

2q2

p�1 + q2
−

2

p2 �1 + q2 − �1 + q2� .

�C20�

Therefore, limz→z�k��z�k�−z�P̂�k ,z�=1+O�k2�.
Now for any fixed k� �0,2��, the characteristic function

of the distribution P� x
�t

, t� is P̂� k
�t

, t�. Since the roots of
D�k ,z� are isolated, we can set r�p�=1+

�2
2 p so that �z� k

�t
��

�r�p� and other roots are outside the circle ��z�=r�p��. Fur-
thermore, when t is large, k

�t
is small, hence the lemmas are

applicable. We define the contour C as C= �z : �z�
=r0�� �z : �z�=r�p��, where r0�1.

By definition,

P̂� k
�t

,t
 =
1

2�i
�

�z�=r0

P̂� k
�t

,z

zt+1 dz . �C21�

Since z� k
�t

� is the only pole inside the contour, we have

− Res� P̂� k
�t

,z

zt+1 ,z� k

�t

�

=
1

2�i���z�=r0

P̂� k
�t

,z

zt+1 dz − �

�z�=r�p�

P̂� k
�t

,z

zt+1 dz� .

�C22�

For fixed 0� p�1, supk,�z�=r�p��P̂� k
�t

,z����. Hence,
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�
�z�=r�p�

P̂� k
�t

,z

zt+1 dz = O�r�p�−t� . �C23�

We have

P̂� k
�t

,t
 = − Res� P̂� k
�t

,z

zt+1 ,z� k

�t

� + O�r�p�−t� .

�C24�

Note that by Eq. �C13�, we have

lim
t→�

lim
z→z�k/�t�

�z� k
�t

 − z�P̂� k

�t
,z
 = 1 + O�t−1� .

�C25�

Note also that by Eq. �C11�,

z� k
�t

 = 1 +

p + 2�1 + q2 − 2

2p

k2

t
+ O�t−2� , �C26�

which implies that

� 1

z� k
�t

�

t+1

= �1 +
p + 2�1 + q2 − 2

2p

k2

t
+ O�t−2�
−�t+1�

= �1 −
p + 2�1 + q2 − 2

2p

k2

t
+ O�t−2�
t+1

= exp�−
p + 2�1 + q2 − 2

2p
k2
 + O�t−1�, ∀ k .

�C27�

Therefore, by �C12�, ∀ k� �0,2��,

P̂�z� k
�t

,t� = exp�−

p + 2�1 + q2 − 2

2p
k2
 + O�t−1� ,

�C28�

as t→�. Hence, the limiting distribution of the symmetric
decoherent Hadamard walk is Gaussian with variance v
= p+2�1+q2−2

p .
Proof of Theorem IV.4. For the symmetric walk, we can

also find its long-term variance by the generating functions.
Let C be the same contour as before, when t is large, z=1 is
the closest root to 0 among all that of the denominator of

P̂�k ,z�.
Note that

− �k
2P̂�0,z� =

z

�1 − z�2 +
2z2�− 1 + �1 + q2z2�

�1 − z�2�pz + �1 − z��1 + q2z2�
,

�C29�

and that

Res� 1

zt+1� z

�1 − z�2 +
2z2�− 1 + �1 + q2z2�

�1 − z�2�pz + �1 − z��1 + q2z2�

,1�

= �− 1 −
2��1 + q2 − 1�

p

t +

2q2

p�1 + q2

+
2

p2 �1 + q2 − �1 + q2� . �C30�

Hence,

V�x,t� = − �k
2P̂�0,t� = −

1

2�i
�

C

�k
2P̂�0,z�

zt+1 dz

= − Res� 1

zt+1� z

�1 − z�2

+
2z2�− 1 + �1 + q2z2�

�1 − z�2�pz + �1 − z��1 + q2z2�

,1� + O�r�p�−t�

=
p + 2�1 + q2 − 2

p
t −

2q2

p�1 + q2

−
2

p2 �1 + q2 − �1 + q2� + O�r�p�−t� . �C31�

The change of the order of integration and differentiation is

justified since �k
2P̂�k ,z� is continuous on the contour. Hence,

the long-term variance of the walk is p+2�1+q2−2
p t− 2q2

p�1+q2

− 2
p2 �1+q2−�1+q2�+O�r�p�−t�.

APPENDIX D: PROOFS IN SECTION IVB

From the decoherence equation we have

P̂1,1�k,z� = −
q

p
+

1

p

1 − Q2,2

det�I − Q�
, �D1�

P̂1,2�k,z� =
1

p

Q1,2

det�I − Q�
. �D2�

Let P̂̃�k ,z�= P̂1,1�k ,z�+ P̂1,2�k ,z� be the generating function
of the walk starting at �0,1	. Then

P̂̃�k,z� = −
q

p
+

1 − �1 + i�3 + �2 + i�4

p det�I − Q�

= P̂�k,z� + i
�3 + �4

p det�I − Q�
. �D3�

Note that �3 and �4 both have a factor of sin k, we denote
�3

sin k and
�4

sin k by �3 and �4, respectively.
Proof of Theorem IV.5. Note that
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�kP̂̃�0,z� = �kP̂�0,z� + �i�k�sin k
�3 + �4

p det�I − Q�
�k=0

= �i��3 + �4

p

�

k=0

= i
z��1 + q2z2 − 1�

�1 − z��pz + �1 − z��1 + q2z2�
. �D4�

Let C be the same contour as before. When t is large, z=1 is
closest to 0 among the roots of the above denominator.
Hence, for fixed p,

	̃t =
1

i
�kP̂̃�0,t� =

1

2�i
�

C

�kP̂̃�0,z�
izt+1 dz

=
1

2�i
�

C

��1 + q2z2 − 1�

zt�1 − z��pz + �1 − z��1 + q2z2�
dz

= Res� ��1 + q2z2 − 1�

zt�1 − z��pz + �1 − z��1 + q2z2�
,1
 + O�r�p�t�

=
�1 + q2 − 1

p
+ O�r�p�t� . �D5�

Proof of Theorem IV.6. Note that −�k
2P̂̃�0,z� must be real.

Hence,

− �k
2P̂̃�0,z� = − �k

2P̂�0,z� . �D6�

Therefore, the formula is the same as before.

Proof of Theorem IV.7. We want to show that P�
x−	̃t

�t
, t�

→N�0,v�. The long-term characteristic function is

P̂̃� k
�t

,t
e−i�	̃tk/�t�

= P̂� k
�t

,t
e−i�	̃tk/�t�

+ e−i�	̃tk/�t�sin
k
�t

1

2�i
�

C

1

zt+1� �3 + �4

p det�I − Q�

� k

�t
,z
dz

= exp�−
p + 2�1 + q2 − 2

2p
k2
 + O�t−1/2� . �D7�

Hence, the limiting distribution of the decoherent Hadamard
walk starting from 0 with coin state 1 is Gaussian with vari-

ance v= p+2�1+q2−2
p .

APPENDIX E: ALTERNATIVE PROOF OF THEOREM 1

By Theorem IV.1,

− �k
2P̂�0,z� =

z

�1 − z�2 +
2z2�− 1 + �1 + q2z2�

�1 − z�2�pz + �1 − z��1 + q2z2�
.

�E1�

Note that the variance of the walk at time t is given by

V�x,t� = − �k
2P̂�0,t� �E2�

and

P̂�0,z� = �
t

P̂�0,t�zt. �E3�

Thus, V�x , t� is the tth coefficient of the Taylor expansion of

−�k
2P̂�0,z�.
As p→0, the symmetric decoherent Hadamard walk be-

comes the pure Hadamard walk. In particular, the function
V0�z�=�t=1VQ�x , t�zt can be obtained from Eq. �E1�,

V0�z� =
z

�1 − z�2 +
2z2

�1 − z�3�1 −
1

�1 + z2
 . �E4�

Comparing the coefficients of the Taylor expansion of V0�z�
gives

VQ�x,t� = t − �
j=1

��t−2�/2�

�t − 2j��t − 2j − 1��− 1� j�1

2

2j 1

j

�2j�!
�j!�2 .

�E5�

As t→�,

VQ�x,t�
t2 → − �

j=1

�

�− 1� j�1

2

2j 1

n

�2j�!
�j!�2 = 1 −

1
�2

. �E6�
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